
Identifying Gaps in the Secure Programming Knowledge and
Skills of Students

Jessica Lam1, Elias Fang1, Majed Almansoori2
Rahul Chatterjee2, Adalbert Gerald Soosai Raj1

1 University of California, San Diego, 2 University of Wisconsin - Madison
{jplam,elias}@ucsd.edu, {malmansoori2, rahul.chatterjee}@wisc.edu, gerald@eng.ucsd.edu

ABSTRACT
Often, security topics are only taught in advanced computer sci-
ence (CS) courses. However, most US R1 universities do not require
students to take these courses to complete an undergraduate CS
degree. As a result, students can graduate without learning about
computer security and secure programming practices. To gauge stu-
dents’ knowledge and skills of secure programming, we conducted
a coding interview with 21 students from two R1 universities in
the United States. All the students in our study had at least taken
Computer Systems or an equivalent course. We then analyzed the
students’ approach to safe programming practices, such as avoiding
unsafe functions like gets and strcpy, and basic security knowl-
edge, such as writing code that assumes user inputs can be mali-
cious. Our results suggest that students lack the key fundamental
skills to write secure programs. For example, students rarely pay
attention to details, such as compiler warnings, and often do not
read programming language documentation with care. Moreover,
some students’ understanding of memory layout is cursory, which
is crucial for writing secure programs. We also found that some
students are struggling with even the basics of C programming,
even though it is the main language taught in Computer Systems
courses.

CCS CONCEPTS
• General and reference → Evaluation; • Social and profes-
sional topics → Computer science education; • Security and
privacy → Vulnerability management.

KEYWORDS
Computer security education; Computer systems; Unsafe functions;
Buffer overflow; Security vulnerabilities; C and C++

ACM Reference Format:
Jessica Lam, et al.. 2022. Identifying Gaps in the Secure Programming
Knowledge and Skills of Students. In Proceedings of the 53rd ACM Tech-
nical Symposium on Computer Science Education V. 1 (SIGCSE 2022), March
3–5, 2022, Providence, RI, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3478431.3499391

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE 2022, March 3–5, 2022, Providence, RI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9070-5/22/03. . . $15.00
https://doi.org/10.1145/3478431.3499391

1 INTRODUCTION
Since security courses are often not required for a Computer Science
degree, students can graduate without ever taking a security course.
Furthermore, as prior work [2, 3] has shown, basic security topics
are often not covered in the required courses, and students can
graduate without learning the most basic — yet important — secure
programming practices. This is particularly concerning given the
fact that students will join the software developer workforce who
design and build the digital systems that our modern society and
critical national infrastructures rely on.

Prior studies [6, 11, 12, 18–20] have attempted to remedy this
by developing and designing tools, modules, and interventions
to address the lack of security topics in computer science educa-
tion. Despite several prior works on improving students’ security
knowledge, studies [2, 21] have shown that students regularly write
insecure code in their assignments. An obvious remaining question
is why students fail to write secure programs. Do they have all the
required knowledge and skills to understand the potential security
issues of the code they write?

Specifically, in this work, we aim to understand the following
research question:

RQ: What are some common issues students face while writing
secure programs and identifying, understanding, or fixing inse-
cure code?

To answer this question, we conducted coding interviews with
students who have at least taken Computer Systems or an equiv-
alent course in two R1 universities (the University of California,
San Diego (UCSD) and the University of Wisconsin-Madison (UW-
Madison)) in the US. We developed the interview questionnaire to
gauge students’ basic security knowledge and their approach to
programming in terms of security. By approaching this as a qualita-
tive study, we were able to focus on students’ behaviors and their
actions to solve the problems they were given. Through this study,
we hope to understand the issues that students face while working
with code that may contain security issues and find the root causes
for difficulties students face with secure programming.

In total, we interviewed 21 students over Zoom, with the par-
ticipants sharing their screens during the interview. We analyzed
the nearly 20-hour-long interviews and used coding and thematic
analysis to analyze our data systematically. Overall, we found that
many students lack the basic building blocks needed to write secure
code: Students struggled with reading and understanding compiler
warnings and language documentation, knowledge of memory, ba-
sic C programming, and knowledge of unsafe functions and their
safer alternatives.

Session: Cultivating a Security Mindset SIGCSE ’22, March 3–5, 2022, Providence RI, USA

703

https://doi.org/10.1145/3478431.3499391
https://doi.org/10.1145/3478431.3499391
https://doi.org/10.1145/3478431.3499391

2 RELATEDWORK
With the increased importance of security, it is necessary that all
computer science students learn about the topic. However, security
is often only taught in advanced courses, and many top universities
in the US do not require students to take such security courses
to graduate [2]. As a result, students can graduate without any
knowledge of security and secure programming practices.

Since we cannot just rely on security experts to fix all vulnerabil-
ities – including simple ones – in our code, we must train software
engineers to develop secure coding practices by teaching security
early in their CS curriculum. Prior work [16] has shown that we can
introduce security concepts to students as early as CS1 to increase
their security awareness from the beginning of their studies. There
have also been modules [6, 11, 12, 18–20] designed to teach students
secure coding habits in introductory CS courses (CS0, CS1, and CS2).
These modules have been shown to effectively improve students’
security awareness and ability to apply security knowledge.

Bishop [5] explored the concept of a security clinic to teach
secure coding habits beyond introductory courses. It was noted
that students often only followed robust programming practices
when required of them in a coding assignment and did not consider
it as an essential practice. This study showed that implementing the
clinic on a computer security course could help increase students’
security awareness and reduce security issues in their assignments.

Although there have been several studies on improving students’
security knowledge, students are still exposed to unsafe program-
ming practices and thus continue to use them. For example, Taylor
et al. [21] analyzed seven database textbooks used by the top 50
US CS programs and showed that many do not thoroughly discuss
SQL injection, a common database exploit. They also found that
these textbooks often do not teach ways to prevent SQL injection,
such as writing parameterized queries, and that two of the seven
textbooks even gave examples of code that was SQL injectable.

Recent studies [2, 3] have examined the mid-level Computer Sys-
tems course, which many universities teach. In this course, students
are introduced to the C (or C++) language and some Assembly lan-
guages such as x86. Almansoori et al. [2] collected projects written
by students in the top 20 CS programs in the US for their Com-
puter Systems course and showed that students used many unsafe
functions that can lead to security issues such as buffer overflow.
Their work also showed that lectures did not warn about unsafe
functions and even provided code snippets and project skeleton
code containing some of those unsafe functions.

Moreover, Almansoori et al. [3] analyzed textbooks used in the
Computer Systems course of the top 30 CS programs in the US
and showed that most textbooks did not discuss security nor warn
about using unsafe functions. Unfortunately, these textbooks also
have vulnerable code snippets, possibly hindering students from
writing secure code.

3 METHODOLOGY
In this section, we explain how we designed our survey, recruited
participants, conducted interviews, and analyzed the collected data.

Designing the survey. We designed the survey to understand
students’ approach to C programming questions with respect to
security. We decided to mainly write questions that would evaluate

Behavior

1 Avoiding use of unsafe functions
2 Using safer alternatives correctly
3 Understanding the danger of using unsafe functions
4 Awareness of user inputs that may break the code
5 Knowing how to fix issues caused by unsafe functions

Behaviors Answer (other equivalent answers are accepted)

Q1 1, 2 Use fgets and limit the number of characters read

Q2 1, 2 Use strncat with a constant size parameter so that buffer
only contains characters that fit

Q3 3 The small buffer of destination array in strcpy causes
source array to be overwritten

Q4 4, 5 Inputs longer than the defined array size will cause buffer
overflow and adding a width specifier would solve this issue

Q5 4, 5 The longest option would break the code and it is safer to
use snprintf

Figure 1: The list of behaviorswe used to evaluate a student’s
secure programming knowledge and skills (top). The behav-
iors tested by each question and the expected answers from
students (bottom).

students’ understanding ofmemory and stack-based buffer overflow
exploits. With this in mind, we defined important behaviors to
use when assessing students’ secure programming knowledge and
skills; this list is shown in Figure 1. Based on these behaviors, we
designed a set of questions and improved them iteratively, ending
up with a set of five questions, as shown in Figure 1.

Prerequisites. We ensured that all students had already completed
a Computer Systems course and learned C or C++ before taking
the survey, as it was a prerequisite for students to participate. We
also allowed participants who have not taken any security courses
since this helped us understand whether security is taught well, if
taught at all, in Computer Systems courses.

Interview questions. The first question evaluated a student’s
knowledge of reading from standard input. We wanted to see if
students could do so safely by giving students two function options:
gets and fgets. We hoped that students would choose fgets to
avoid running into buffer overflow by limiting the number of char-
acters read. This also allowed us to observe whether or not students
knew that gets is a deprecated and unsafe function that should be
avoided while programming.

The second question tested students’ knowledge of the unsafe
function strcat. Students were asked to fill in code concatenating
user input passed in through the command line. For this question,
we observed whether students would avoid the unsafe function
strcat since the user can input any number of characters. Again,
we looked for the use of safer alternatives, like strncat.

The third question asks students to identify the error in a code
snippet that contains the unsafe function strcpy. The student must
explain why the program changed the source array passed into
strcpy and not the destination array, which requires knowledge
of the stack and buffer overflow.

The fourth question asks students what potential issues a code
snippet could have using scanf. Our goal is to test if the student
would realize that the user could provide an input that is too long

Session: Cultivating a Security Mindset SIGCSE ’22, March 3–5, 2022, Providence RI, USA

704

Demographic UW-Madison UCSD Total
Gender
Male 7 6 13
Female 3 5 8
Class Standing
Sophomore 1 6 7
Junior 7 1 8
Senior 2 4 6
Completed Security Course
Yes 2 1 3
No 8 10 18
Industry Experience
Yes 4 8 12
No 6 3 9

Figure 2: Participant demographics

and thus cause a buffer overflow. We also asked for a potential fix,
for example, using fgets instead or adding a width specifier.

The final question tests the ability to find out if a function is
safe to use or not by generalizing prior knowledge about buffer
overflow. In this case, students needed to realize that sprintf is
vulnerable to buffer overflow and understand which inputs could
then cause the program to crash.

Our survey also include pre- and post-survey questions asking
about the interviewees’ year in school, the Computer Systems or
related courses that they have taken, their familiarity with C, C++,
Java, Python, and Assembly, their demographic information, and
whether or not they have had industry experience. The survey
questions can be found here https://bit.ly/2VTRqdc.

Improving the survey. We conducted two pilot interviews at
UCSD and realized that there were typos and mistakes in the first
draft of the survey. In the first question, the provided answer option
with the use of fgets contained a buffer of size 8 instead of 7. By
fixing this error, we helped avoid any confusion or other external
factors that could affect how the students answer that problem.
We also realized that the solution to the third question was easily
searchable on Stack Overflow, so we edited the question to be
unique and different. This removed the possibility of students just
copying and pasting answers from the Internet.

After conducting the UCSD interviews, we noticed that question
1 was not as helpful in answering our research question as we
originally expected. In the first iterations, the name character array
was length 8 so the example input and output we provided often
hinted to students that they needed to limit user input somehow.
Furthermore, because the first iteration listed answer options, we
could not observe other ways students could approach the question.
Thus, we updated the sample code snippet and made the question
more open-ended while conducting the UW-Madison interviews.

Participant recruitment. Students are typically introduced to
process memory and C/C++ in the Computer Systems course. Thus,
we wanted to recruit students who had completed Computer Sys-
tems and self-evaluated that they know how to code in C/C++.

We created a recruitment form that asked how often students
code in C and whether they have taken Computer Systems or an
equivalent course. We only recruited students who knew C, were
18 or older, and consented to be recorded. As an incentive, all
participants received a $15 dollar Amazon gift card. As our study
involved recruiting and interviewing students, we received IRB
approval from both universities to conduct our research 1.

We recruited 11 students from UCSD by distributing the recruit-
ment form in Discord servers of 13 student organizations and in
four Facebook groups. After we interviewed the students from
UCSD, we recruited 10 students from UW-Madison by emailing the
computer science undergraduate mailing list. In total, between two
universities, we interviewed a total of 21 students. Among these 21,
8 were female, and the remaining were male. Most of the students
had just completed their Junior year. The demographics of our par-
ticipants can be seen in Figure 2. Out of all of the participants, only
3 students had taken at least one security course, and one student
learned about security outside of school out of their own interest.

Interviews. For each interview, we ensured that the student con-
sented to be recorded. We asked participants to follow a think-aloud
protocol to help us understand students’ thought processes during
the interview. On average, interviews lasted about 30-75 minutes.

For UCSD, interviews were conducted by two interviewers; one
focused on giving the student directions and answering the stu-
dent’s questions about the survey, while the other focused on taking
notes on the student’s survey responses and behaviors. Both inter-
viewers asked clarification questions about the student’s approach
and process. We also often prompted students to think aloud so that
we could follow their thought process more easily and efficiently.
For UW-Madison, we had only a single interviewer since we noticed
that having a note-taker was not necessary because the interviews
were video recorded. Otherwise, the protocol was the same.

During the interview, the students were allowed to use search
engines like Google, look up programming documentation, and
use their preferred IDEs to compile and test code. The goal was
to provide students with a typical coding environment as in the
real world so that we could observe how students would normally
behave while solving programming questions related to security.
We also refrained from answering student questions other than
clarification to help them understand the problems better to avoid
biasing our results.

Although our consent form mentioned that the interview would
contain security-related questions, we did not explicitly state during
the interview that we would assess students on their secure coding
practices. In doing so, we could more accurately observe whether
students would apply their security knowledge in typical program-
ming environments that are not necessarily security-focused.

After interviewing 10 students at UCSD and 11 students at UW-
Madison, we decided against interviewing additional students as we
did not observe any new behaviors among students after a certain
number of interviews.

Data analysis. After conducting all interviews, the interviewers
reviewed each recording and transcript, taking notes on specific im-
portant behaviors. For example, how students initially approached

1IRB numbers for UCSD and UW-Madison are 201933SX and 2020-1574 respectively.

Session: Cultivating a Security Mindset SIGCSE ’22, March 3–5, 2022, Providence RI, USA

705

https://bit.ly/2VTRqdc

problems, what resources they used to solve problems, and whether
or not the solutions they came up with were considered “secure”.
Upon reviewing these notes as a team, we noticed several common
themes present among students when they were solving each ques-
tion. We then created multiple codes that we could associate with
each theme tomore clearly see the strengths and issues that students
exhibited and faced during the interview and to help identify the
main areas of concern regarding secure programming. The themes
that emerged from these interviews are presented in Section 4.

4 RESULTS
Through the interview and coding process, we found that many stu-
dents lacked the necessary fundamental knowledge in several areas,
which ultimately hindered their ability to write secure code. On the
other hand, we also observed several students who performed very
well on certain questions, and thus we were able to take note of
the kinds of useful prior knowledge or skills they utilized in these
instances. Through the themes that emerged from the interview
observations, we decided on 6 main areas of knowledge that we
consider helpful prerequisites for learning how to code securely.

4.1 Understanding compiler messages
Compilers print useful messages, especially warnings and errors,
which can help produce more secure code. However, we found that
several students regularly ignored important compiler warnings
that were pointing to security issues with the functions they were
using. The primary reason for ignoring them is that the written
code would still execute and output relevant results before failing.
An example of this is when S9 (student 9) at UCSD tested the code
they wrote for Q1 (question 1), which used the C library function
gets. Their compiler gave warnings that stated gets is deprecated
and unsafe. Still, the student continued to use the function in their
answer anyway, stating, “We get a bunch of warnings about how
it’s unsafe ... and how it’s been deprecated ... but I think it works.”

We also observed that students do not read compiler errors care-
fully or understand them properly. For example, while executing
Q4, some students received a “stack smashing detected” exception
due to inputting a long string into a small buffer. This exception is
added to notify users about potential buffer overflow attacks. How-
ever, we found only 3 students were familiar with or had even heard
about the stack smashing exception (S1 at UCSD and S6, S8 at UW-
Madison). Many students either did not encounter the specific error
or did not know how to address it. Some students believed it was
an issue with their computer or compiler, and others just ignored
the error and moved on. Only 5 students (S1, S9 at UCSD, and S1,
S4, S7 at UW-Madison) who did not know about the error actually
tried to look it up on the Web. In general, we found students who
did well in identifying, understanding, and fixing the buggy code
snippets also paid close attention to the warning and exception
messages.

4.2 Utilization of resources
Students were allowed to use any online or locally-installed C
compilers to test their code during the interview. We also allowed
them to search up anything they would like to in order to simulate
a realistic software developer workflow. We observed how students

use the available resources (function manuals and the internet) to
understand and solve the programming problems.

We saw that at least 4 students (S1, S6 at UCSD and S1, S2 at UW-
Madison) copied answers from online forums (most commonly
Stack Overflow) or arbitrary examples on documentation sites.
Moreover, students would often copy the first suggested answer or
example code without reading the post in detail or other comments.
This was worrisome since Stack Overflow often contains insecure
code snippets [8]. It was also concerning that many students only
skim through documentation and go straight to the examples sec-
tion. As such, students sometimes missed how to correctly use
the function and noticeably ignored important warnings about the
security issues with certain functions.

For example, when addressing Q2, students searched up ways
to concatenate strings in C. For many, top search results would
reveal the C library function strcat, and they would simply use
this function in their answer. As a result, only a much smaller subset
of students who either read other Stack Overflow answers or read
documentations in-depth learned that, while strcat works, it is
much safer to use its alternative strncat. The difference in the way
students referenced online materials affected how securely they
answered this specific question.

In an extreme case, S6 at UCSD accessed strcat documentation
and saw an example on the same page using the function strcpy.
Seeing the example, the student ended up answering using strcpy,
assuming that it behaves similarly to strcat, stating that they were
“using the strcpy function and [had] the buffer as the destination
[with argv[1]] to be added on to the buffer”.

Something we were not expecting but were very excited to see
was that some students took the initiative to explore a topic brought
up during the interview and took the time to learn about it to better
understand the question and how to answer it. For example, S10
at UW-Madison came across a Stack Overflow answer mentioning
“buffer overflow” while trying to understand how to answer Q3 of
the interview. As a result, the student searched up buffer overflow
to better understand it.

4.3 Knowledge of memory
Since our interview questions focused on the buffer overflow vul-
nerability, understanding how processes use computer memory
would be essential for answering the survey questions. However,
many students displayed little knowledge or had misunderstand-
ings about memory and memory layout.

For example, in Q3, many students realized that the issue was
due to copying a string into a smaller destination buffer. Still, they
could not recall the memory layout to explain the error further. In
Q3, two character arrays were defined and are stored directly one
after another in the stack. Therefore, copying larger content into
the latter array overwrites the former character array. As a result,
they did not understand why the buffer overflow caused this exact
behavior and either skipped the question, gave vague reasoning,
or cited that it was because of “undefined/unexpected behavior”.
According to S1 at UW-Madison, “the size” of the destination “needs
to be large enough when using strcpy. Otherwise, it results in
undefined behavior”. Another student, S3 at UW-Madison, said,
“something bad happens” if the buffer overflows.

Session: Cultivating a Security Mindset SIGCSE ’22, March 3–5, 2022, Providence RI, USA

706

Similarly, S7 at UCSD could not recall whether arrays are stored
in the stack or the heap, and forgot the order in which arrays
are stored in the stack. Since the student was given access to the
Internet, they were able to find these answers eventually, but this
helped show the lack of understanding they originally had about
memory and memory layout. Another student, S2 at UW-Madison,
also had confusion about how data are stored in memory. Although
both buffers are stored in the stack, the student said, “question1 is
allocated on stack memory, and question2 is allocated on heap”.

Other students have shownminimal to no understanding ofmem-
ory errors. For example, S2 at UW-Madison said that a “Memory
leak” caused the output of the code snippet provided in Q3. More-
over, the student stated that “the first 15 characters in question1
are now referencing memory that doesn’t contain any character
values.” Other students have also discussed that dangling pointers
could cause the issue.

4.4 Knowledge of C Programming Language
Although we required interviewees to be familiar with C, we found
that many students struggled to recognize several standard C library
functions and displayed several misunderstandings about the C
programming language.

First, several standard C library functions appear throughout the
survey and/or were used by students in the interview. These include
printf, scanf, gets, fgets, strcpy, and strcat. Although many
of them are popular functions, we noticed that even if some students
recalled these functions, many did not remember the details and
usage of a majority of them. Note that sprintf appears in the
survey, but we do not expect students to have encountered this
function before.

For example, when S8 at UW-Madison attempted to use the func-
tion strncat in Q2 of the survey, they misunderstood how it works
and tried to use it in the following way:
strcpy(buf,strncat(buf, argv[1], 14)). While strncat con-
catenates the source string to the destination string, the student
believed that it returns a string of the destination and source strings
concatenated together as a new string. Thus, the student used
strcpy in an attempt to assign the “output” of strncat to buf.

Other students had more general misunderstandings of C. For
example, S4 at UCSD could not recall if C has bounds checking,
which is an important reason why much of C code is insecure to
buffer overflow. In another case, some students (S6 at UCSD and
S2, S4 at UW-Madison) had difficulty with Q3 and misunderstood
that it was an issue with pointers being somehow rearranged when
accessed.

4.5 Knowledge of unsafe functions
We separated this from the “Knowledge of C programming Lan-
guage” category because, while some students may know or recog-
nize some C library functions, theymay not realize that the function
is unsafe or has safer alternatives. This is important because un-
derstanding how to use the safer alternative of a function can be a
simpler and quicker way to fix unsafe C code.

Arguably, the function gets is the most well-known unsafe li-
brary function [1, 15] as gets has been deprecated and also because
it was mentioned as unsafe in most textbooks used by Introductory

Computer Systems courses [3]. However, we found that roughly
half of the students interviewed (S1, S2, S3, S4, S6, S7, S8, S9, S11
at UCSD and S4, S5 at UW-Madison) displayed that they either did
not know gets at all or recognized it but still did not know of its
security implications. As a result, a few of those students continued
to use it in their code. Note that several students did not encounter
gets at all during the interview, and so we could not assess whether
they considered the function as unsafe or not.

On the other hand, several students either had prior security
knowledge or had taken a security course and recalled the secure
alternatives to some of the library functions tested (i.e., strncpy is
a safer alternative to strcpy). Some students didn’t know that some
of these functions were unsafe but learned about them and their
safer alternatives when searching them up during the interview.

4.6 Understanding of general security topics
We did not expect the students who participated in this survey to
have a huge security background. However, while students may
not completely understand these security topics, some displayed
a level of understanding of the implications and consequences of
errors/vulnerabilities in the code in terms of security. Thus, we
came up with this category to gauge how well students understood
the code they read and wrote in terms of security.

In response to Q1, Q2, and Q4, several students trusted user
input and believed that, by simply increasing the buffer size or by
prompting the user to input less than n characters, they could solve
this issue where the user may input something longer than the
allotted buffer size. For example, S1 at UW-Madison explained, “I
would change the buffer size to be a larger character string, maybe
like 256 or 1024”. In another case, S11 at UCSD mentioned that the
issue could be fixed by “either asking for shorter input or reallocat-
ing space in name to support the length of the input”. It is evident
through these responses that these students were not considering
this question with security in mind (as an attacker is not the average
user and would thus still be able to exploit this program even after
these proposed fixes).

However, even if students had prior knowledge of security, they
did not always begin the interview with security in mind. For exam-
ple, a student S9 at UW-Madison originally used the unsafe function
gets in Q1 but, after submitting and upon approaching question
2, they realized that they “forgot to check for buffer overflow” in
the previous question. When prompted, this student was able to
articulate a more secure way to answer the first question, which
showed that they did, in fact, understand how to code securely.
However, coding with security in mind seemed to be more of an
added afterthought in this case rather than the primary practice.

5 DISCUSSION
Through the interviews and coding process, we found six main
areas of concern that hindered students’ understanding of secure
programming. In this section, we interpret the results, discuss them
in relation to prior studies, and provide recommendations to im-
prove the status quo of security education. We also discuss the
limitations of our work and possible directions for future work.

Interpretation of results. Currently, much of security education
research focuses on students’ knowledge of security and on finding

Session: Cultivating a Security Mindset SIGCSE ’22, March 3–5, 2022, Providence RI, USA

707

ways to teach security through interventions like security clinics or
learning modules on security [6, 11, 12]. However, our results show
that perhaps we have failed to see the root causes of the problem
– many students struggle with secure programming because they
lack some fundamental knowledge/skills in programming.

Although students are not required to be fully proficient in all six
categories listed above (see Section 4), we found that an understand-
ing or lack thereof in any or all of these areas was important to a
student’s overall understanding of secure coding. These six main
categories thus also help pinpoint areas that the security education
research community can focus on improving and therefore better
prepare students to learn secure coding practices.

Alternative interpretation. Most students did not do well on our
5-question programming quiz, and this could be interpreted that
the questions we asked were too difficult and tricky for the students.
However, we restricted our questions to basic programming knowl-
edge, such as copying a string, reading input, etc. Another limitation
could be that we did not explicitly mention that we were testing
their security skills and practices during the interview (Though the
careful reading of our consent form will reveal the study intention,
which few students read carefully).

Relationship with prior studies. The “understanding compiler
messages” and “utilization of resources” categories highlighted that
many students lacked or struggled with these important skills (that
are usually not explicitly taught in a CS course). This is congruent
with prior research on the complexity of compiler errors and warn-
ings and the difficulties novice programmers face when addressing
them [7, 17]. As such, there has been much work addressing ways
to teach these skills as well as finding interventions to help stu-
dents digest complex compiler messages [4, 9, 10] and more easily
seek answers online [13, 14]. In the “knowledge of unsafe func-
tions” category, we showed that many students did not recognize
unsafe functions and the safer alternatives of many C library func-
tions tested in the interview. However, this was expected as it was
shown in prior works that Introductory Computer Systems courses
(in which many students learn how to program in C) do not warn
their students of these security issues [2], and textbooks used by
these courses also do not always mention the safer alternatives of
many C library functions [3].

Recommendations We realize that several of these categories,
such as “understanding compiler messages” and “utilization of
resources”, are not often taught in traditional computer science
courses and thus may also be a contributing factor as to why stu-
dents struggled in these aspects. However, we found these skills
important for students to better understand the code they encounter
and guide students toward more robust and secure coding practices.
Thus, we propose that these important skills should receive more
emphasis in the classroom.

We also found that students struggled with the C programming
language. This may be because students often start with learning
high-level programming languages such as Java and only receive
introductions to C later in their university curriculum (for example,
in an Introductory Computer Systems course). The introduction
to the C programming language is often quick, brief, and taught
alongside difficult concepts such as memory, bitwise operations,

etc. This could explain why students struggled to recall many C
library functions and concepts.

Limitations and threats to validity There were only 21 total
interviews conducted over 2 different US universities. As such, our
participant pool only represents a smaller subset of computer sci-
ence students attending US universities. In order to gain a clearer
picture and solidify our data, we would need to repeat these inter-
views with a more significant number of students across a wider
variety of US universities. Our results were also collected through an
interview process. Thus, with the added pressure of a perceived as-
sessment, the collected results may not wholly reflect how students
would normally approach such questions. The questions students
were asked to answer were also on toy code snippets, which have
little purpose outside their use in the interview, so students may
not have responded to them as seriously as opposed to if they had
to address more critical code, for example, in their workplace.

Future work. Currently, there is a gap in security education re-
search that seeks to pinpoint these areas of concern and propose
interventions for teaching or supplementing these knowledge areas.
If we want to achieve our goal of teaching students secure coding
practices, we should focus on finding these ways to bridge the gaps
we found in prerequisite knowledge and skills. In doing so, we can
better prepare students to learn secure coding practices and also
use these teaching methods to supplement other ways of teaching
security, such as the module-based approach.

6 CONCLUSION
We interviewed 21 students across two US universities to under-
stand how students approach coding to identify the barriers they
may face when attempting to understand or fix unsafe code and
write secure programs. As a result, we found six main knowledge
areas we consider essential foundations and prerequisites that can
help students better employ secure coding practices. Students who
excelled in the interview tended to display knowledge/skills in sev-
eral of these six areas. On the other hand, we found that many
students whose lack of knowledge/skills in one or more of these
areas ultimately hindered their ability with secure programming.
Through this work, we pinpoint the lack of understanding in these
important prerequisite knowledge areas as root causes of the diffi-
culty students faced when attempting to identify and fix insecure
code. Beyond that, even for students who do have sufficient knowl-
edge in these areas, it is important that they keep them in mind
when reading and writing code. We hope these results bring aware-
ness to the security education research community to focus on
addressing ways to better teach, supplement, and demonstrate the
importance of these knowledge areas to bridge the gap students
are facing when employing secure coding practices.

ACKNOWLEDGMENTS
We thank all the students who participated in our study. We also
thank the anonymous reviewers for their feedback on our work.
This work was supported in part by NSF Award 2044473. Any
opinions, findings, and conclusions, or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

Session: Cultivating a Security Mindset SIGCSE ’22, March 3–5, 2022, Providence RI, USA

708

REFERENCES
[1] CWE-242: Use of inherently dangerous function. http://cwe.mitre.org/data/

definitions/242.html.
[2] Majed Almansoori, Jessica Lam, Elias Fang, Kieran Mulligan, Adalbert Gerald

Soosai Raj, and Rahul Chatterjee. How secure are our computer systems courses?
In Proceedings of the 2020 ACM Conference on International Computing Education
Research, pages 271–281, 2020.

[3] Majed Almansoori, Jessica Lam, Elias Fang, Adalbert Gerald Soosai Raj, and Rahul
Chatterjee. Textbook underflow: Insufficient security discussions in textbooks
used for computer systems courses. In Proceedings of the 52nd ACM Technical
Symposium on Computer Science Education, pages 1212–1218, 2021.

[4] Brett A Becker, Graham Glanville, Ricardo Iwashima, Claire McDonnell, Kyle
Goslin, and Catherine Mooney. Effective compiler error message enhancement
for novice programming students. Computer Science Education, 26(2-3):148–175,
2016.

[5] Matt Bishop. A clinic for “secure” programming. IEEE Security and Privacy,
8(2):54–56, 2010.

[6] Justin Cappos and Richard Weiss. Teaching the security mindset with reference
monitors. In Proceedings of the 45th ACM technical symposium on Computer
science education, pages 523–528, 2014.

[7] Preetha Chatterjee, Minji Kong, and Lori Pollock. Finding help with programming
errors: An exploratory study of novice software engineers’ focus in stack overflow
posts. Journal of Systems and Software, 159:110454, 2020.

[8] Felix Fischer, Konstantin Bottinger, Huang Xiao, Christian Stranksy, Yasemin
Acar, Michael Backes, and Sascha Fahl. Stack overflow considered harmful? the
impact of copy&paste on android application security. In 2017 IEEE Symposium
on Security and Privacy, pages 121–136, 2017.

[9] Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R Klemmer. What
would other programmers do: suggesting solutions to error messages. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages
1019–1028, 2010.

[10] Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca Mercuri. Identifying
and correcting java programming errors for introductory computer science

students. ACM SIGCSE Bulletin, 35(1):153–156, 2003.
[11] Cynthia E Irvine. What might we mean by "secure code" and how might we

teach what we mean? In 19th Conference on Software Engineering Education and
Training Workshops (CSEETW’06), pages 22–22. IEEE, 2006.

[12] Cynthia E Irvine and Shiu-Kai Chin. Integrating security into the curriculum.
Computer, 31(12):25–30, 1998.

[13] Oleksii Kononenko, David Dietrich, Rahul Sharma, and Reid Holmes. Automat-
ically locating relevant programming help online. In 2012 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), pages 127–134. IEEE,
2012.

[14] Yihan Lu and I-Han Hsiao. Seeking programming-related information from large
scaled discussion forums, help or harm?. International Educational Data Mining
Society, 2016.

[15] Linux Programmer’s Manual. gets(3) — linux manual page. https://man7.org/
linux/man-pages/man3/gets.3.html.

[16] Kara Nance. Teach them when they aren’t looking: Introducing security in cs1.
IEEE Security and Privacy, 7(5):53–55, 2009.

[17] Marie-Hélène Nienaltowski, Michela Pedroni, and Bertrand Meyer. Compiler
error messages: What can help novices? In Proceedings of the 39th SIGCSE
technical symposium on Computer science education, pages 168–172, 2008.

[18] Sagar Raina, Siddharth Kaza, and Blair Taylor. Segmented and interactivemodules
for teaching secure coding: A pilot study. In International Conference on E-
Learning, E-Education, and Online Training, pages 147–154. Springer, 2014.

[19] Sagar Raina, Siddharth Kaza, and Blair Taylor. Security injections 2.0: Increasing
ability to apply secure coding knowledge using segmented and interactive mod-
ules in cs0. In Proceedings of the 47th ACM Technical Symposium on Computing
Science Education, pages 144–149, 2016.

[20] Blair Taylor and Siddharth Kaza. Security injections: modules to help students
remember, understand, and apply secure coding techniques. In Proceedings of
the 16th annual joint conference on Innovation and technology in computer science
education, pages 3–7, 2011.

[21] Cynthia Taylor and Saheel Sakharkar. ’); DROP TABLE textbooks;– An argument
for SQL injection coverage in database textbooks. In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education, pages 191–197, 2019.

Session: Cultivating a Security Mindset SIGCSE ’22, March 3–5, 2022, Providence RI, USA

709

http://cwe.mitre.org/data/definitions/242.html
http://cwe.mitre.org/data/definitions/242.html
https://man7.org/linux/man-pages/man3/gets.3.html
https://man7.org/linux/man-pages/man3/gets.3.html

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	4 Results
	4.1 Understanding compiler messages
	4.2 Utilization of resources
	4.3 Knowledge of memory
	4.4 Knowledge of C Programming Language
	4.5 Knowledge of unsafe functions
	4.6 Understanding of general security topics

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

