
Role of Live-coding in Learning Introductory Programming
Adalbert Gerald Soosai Raj

Department of Computer Sciences and Education
University of Wisconsin-Madison

gerald@cs.wisc.edu

Jignesh M. Patel
Department of Computer Sciences
University of Wisconsin-Madison

jignesh@cs.wisc.edu

Richard Halverson
Department of Educational Leadership and Policy Analysis

University of Wisconsin-Madison
rich.halverson@wisc.edu

Erica Rosenfeld Halverson
Department of Curriculum and Instruction

University of Wisconsin-Madison
erica.halverson@wisc.edu

ABSTRACT
Live-coding is an approach to teaching programming by writing
actual code during class as part of the lectures. In a live-coding
session, the instructor thinks aloud while writing code and the
students are able to understand the process of programming by
observing the thought processes of the instructor. In our study, we
conducted a live-coding session to two groups of students as a part
of a teaching intervention that was originally designed for studying
the effects of using the native language for learning programming.
We analyzed the student feedback data that was collected and found
that many students have mentioned about the usefulness of live-
coding for learning programming. We conducted a grounded theory
analysis of the student feedback data to understand the value of live-
coding for learning introductory programming. We found that live-
coding (1) makes the process of programming easy to understand
for novice programmers, (2) helps students learn the process of
debugging, and (3) exposes students to good programming practices.
We also found that students prefer to code along with the instructor
during a live-coding session rather than being mere observers.

CCS CONCEPTS
• Social and professional topics→ Computer science educa-
tion;

KEYWORDS
Live-coding, Students’ perceptions, Computer Science Education

ACM Reference format:
Adalbert Gerald Soosai Raj, Jignesh M. Patel, Richard Halverson, and Erica
Rosenfeld Halverson. 2018. Role of Live-coding in Learning Introductory
Programming. In Proceedings of 18th Koli Calling International Conference
on Computing Education Research, Koli, Finland, November 22–25, 2018 (Koli
Calling ’18), 8 pages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Koli Calling ’18, November 22–25, 2018, Koli, Finland
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6535-2/18/11. . . $15.00
https://doi.org/10.1145/3279720.3279725

https://doi.org/10.1145/3279720.3279725

1 INTRODUCTION
Live-coding [12] is a pedagogical approach for teaching program-
ming where the instructor writes actual code from scratch (i.e.,
without using any skeleton or boilerplate code) on a computer
connected to a projector during the class. The main purpose of
a live-coding session is to teach programming as a process [1, 7].
This approach helps students to fully understand the tasks and
techniques that are needed to write a fully-working program, after
going through multiple iterations of thinking, designing, coding,
and testing. At the end of a live-coding session, along with learning
the programming process, the students also learn the syntax of
the programming construct that was discussed during the coding
session. The effectiveness of live-coding for teaching introductory
programming is discussed in [14].

Live-coding is an alternative approach for teaching programming
compared to the traditional way of using pre-coded working code
examples. There are pros and cons of both these approaches. For
example, live-coding has the advantage of exposing the thinking
processes of the instructor to the students while it takes a lot more
time than explaining using pre-coded examples. On the other hand,
using pre-coded examples, helps instructors to cover more topics
than that can be covered in a live-coding session but tends to create
some misconceptions about programming for novice programmers.
For example, the importance of incremental coding (i.e., writing
a few lines of code and immediately testing them before writing
the next few lines of code) cannot be emphasized using static code
examples since students may get a wrong impression that the code
that is shown during the lecture is the final product that they are
expected to produce before they compile/run their program (for
the first time).

Prior research on live-coding [3, 12, 14] report on the effective-
ness of this approach for teaching programming to novice program-
mers. In these prior works, students’ preferences on live-coding vs.
traditional (pre-coded examples) are collected and they show that
novice programmers prefer live-coding for learning programming.
Even though the student preferences of live-coding for teaching in-
troductory programming are well-known, the reasons for students
to prefer live-coding is still unknown.

In our study, we try to understand the reasons behind why stu-
dents may prefer live-coding as a valuable instructional technique
for learning programming. In other words, what is the value of

https://doi.org/10.1145/3279720.3279725
https://doi.org/10.1145/3279720.3279725

Koli Calling ’18, November 22–25, 2018, Koli, Finland A. G. Soosai Raj et al.

live-coding as an instructional strategy for teaching and learning
programming from the students’ perspective. To answer this ques-
tion, we use the open-ended feedback data that we collected from
one of the experiments we conducted previously [13, 16]. The ex-
periment’s main purpose was to understand the effectiveness of
using students’ native language for learning a programming lan-
guage. As a part of this experiment, we conducted a live-coding
session and in the open-ended feedback we found that students
have mentioned many positive things about our live-coding session.
We used this data and performed a grounded theory analysis to
find the value of live-coding for learning programming from the
students’ perspective.

Our research aims at addressing the following question: What is
the value of live-coding as a pedagogical tool for teaching and learning
programming from the students’ perspective? We believe that our
paper may contribute to the valuable literature on live-coding.

The contributions of our work are the following:

(1) Generate theories on the value of live-coding for learning
programming that is grounded on student feedback data.

(2) Provide evidence that supports the prior work on the effec-
tiveness of live-coding as a pedagogical approach for teach-
ing programming.

2 RELATEDWORK
Marc J. Rubin conducted a semester-long experiment to understand
the effectivess of live-coding vs. static-coding [14] in an introduc-
tory programming course. In this study, programming was taught
to four groups of students (two control groups and two experi-
mental groups) in a C++ course using two different methodologies.
Static-coding was used to teach the control group and live-coding
was used to teach the experimental group. He used four surveys
and the final grades to assess the effectiveness of live- vs. static-
coding. He found that teaching via live-coding is as good as if not
better than static-code examples. He also found that students in
the live-coding group did significantly (statistically) better than
the students in the static-coding group in their final project. He
concluded that live-coding may better prepare students to tackle
large coding assignments by helping them with good programming
practices like iterative testing.

John Paxton taught a Java programming language course by
using live-programming as the primary lecture technique [12]. He
found that at the end of the course 24 students (80%) preferred
the live-programming approach, one student (3%) preferred the
traditional approach, and five students (17%) preferred a combined
approach. He also collected a survey on what students liked and
didn’t like about using live-coding for teaching programming. He
reported from his experience that live-programming is an effective
and fun pedagogical technique for teaching programming. It is
important to note that the students had previous programming
experience in Ada or C++ and hence these results may not apply
directly when live-coding is used for beginning programmers with
no prior programming experience.

Soosai Raj et. al. conducted a study in an introduction to pro-
gramming course in Java. The instructor used three active learning
teaching methods, namely mini-lectures, live-coding and in-class
coding [17]. The authors ranked these three techniques based on

the amount of student activity required. The authors focused on
finding out which of these three active learning techniques (that
require different levels of student activity) were most preferred by
students who learnt programming for the first time. The authors
found that students preferred live-coding the most and in-class
coding the least.

Russel E. Bruhn and Philip J. Burton taught Java using a studio
style teaching method [3]. They used computers within the class-
room so that students could try out the programming concepts
that were presented during the lecture immediately. In their ap-
proach, the instructor presents a concept and then writes some
code from scratch (without any skeleton code) and the students
follow along with the instructor by writing the program on their
assigned computers. They have reported that this style of teaching
programming by actually programming using the computers within
the classroom helps the average-to-poor scholastic achievers the
most, while high-achieving students seemed to do just as well with
the typical lecture-style format. They concluded that by combin-
ing the theory and practice of programming within the classroom,
students learn programming easier and faster. The authors found
that lecturing alone, without any hands-on programming, produces
lower grades on homeworks and exams.

Amy Shannon and Valerie Summet conducted a quantitative
study [15] comparing student learning in live-coding lectures vs.
traditional lectures (which used pre-coded examples). They con-
ducted a within-subjects design where four topics (conditionals,
loops, methods, and arrays) were taught to the same group of stu-
dents. All these topics were divided into two parts (e.g., loops were
divided as while loops and for loops) and one part was taught
using pre-coded examples while the other part was taught using
live-coding. They found that there was no statistically significant
difference between the test scores of participants using these two
types of teaching methods.

In 2012, Nasser Giacaman taught parallel programming concepts
using Java to undergraduate students [9]. He took a practical hands-
on approach to teaching this course where he used live-coding for
teaching parallel programming. He started from scratch in some of
the demonstrations and in others he used some form of base code
to start with so that he may focus on new programming features
that is being taught. From the students’ survey, he reported that
the students found the analogies and the live-coding sessions to be
most useful for their learning of parallel programming.

Alessio Gasper and Sarah Langevin studied the benefits of in-
structor led live coding sessions and student led live coding ses-
sions [8]. They reported that the instructor led live-coding sessions
for teaching programming helps students to focus on understanding
the program in a systematic way rather than memorizing it. They
also reported that the student led live-coding sessions helps the
students to examine their code more rigorously, especially when
catching bugs. The main focus of their work was to help students
in introductory programming course to code with intention rather
than hacking their way to make their program work to pass the test
cases. They collected survey about students’ preferences about live-
coding and found that most of the students preferred live-coding.

Role of Live-coding in Learning Introductory Programming Koli Calling ’18, November 22–25, 2018, Koli, Finland

Most of these previous works evaluate the usefulness of live-
coding either using student surveys which asks about their prefer-
ences towards live-coding or using student responses to questions
like ‘What do you like/dislike about live-coding’. Even though all
these prior works report the effectiveness of live-coding as a ped-
agogical strategy for teaching introductory programming, none
of these prior works tells us what makes live-coding a useful ped-
agogical strategy for learning programming from the students’
perspective. In our work, we try to answer this question by digging
deep into the open-ended feedback we got from students about our
live-coding sessions. We use a grounded theory approach to create
our theories about the role of live-coding in teaching and learning
programming.

3 THEORETICAL BACKGROUND
Cognitive apprenticeship [5, 6] is pedagogical model that focuses on
making thinking visible. This model is based on the ancient model
of apprenticeship where a student learns a skill from a master by
working under the master’s guidance. This model of education
was mainly used in fields like medicine, shoe-making, painting,
agriculture, etc. In modern times, formal schooling replaced this
apprenticeship model but still this model is used whenever it’s
essential (e.g., how new surgeons learn about surgery from experi-
enced surgeons). The emphasis of cognitive apprenticeship is on
acquiring cognitive skills (e.g., programming and problem-solving).

The cognitive apprenticeship model focuses mainly on the pro-
cess rather than focusing only on the end product. With respect to
programming, the process is the multiple iterations of writing code,
compiling the code, correcting syntax errors, running, debugging,
etc that are needed to write a program and the end product is the
final program (code). When pre-coded fully-working code examples
are presented to students who are learning programming for the
first time, they may have a misconception that the program was
written from start to end without any mistakes in a single pass.
This misconception causes some students to write code from start
to end without breaking down the program into multiple smaller
parts. When they follow this approach as opposed to performing
incremental coding they may be overwhelmed looking at the error
messages that pop up when they compile their code at the end. We
can correct this poor practice of writing the whole program at once
and compiling it at the end by explicitly teaching the students how
to program by teaching programming using live-coding.

The three stages of instruction in cognitive apprenticeship are: (1)
Modeling, (2) Scaffolding, and (3) Fading. In the modeling phase, the
students learn a conceptual model of the process from the teacher.
This step is primarily instructor driven. In a live-coding session, this
is the part where the instructor teaches how to write a program for
a particular task by actually writing a program from scratch using
his/her laptop (that is projected to the entire class). The students
may optionally follow along with the instructor by writing the
same program on their computer or they may just observe how the
instructor is writing code and take notes of some things that they
need to remember.

The next stage is the scaffolding stage where the teacher gives
some task to the students and provides the needed scaffolds for
achieving this task. In a live-programming classroom, during the

scaffolding phase, the instructor gives a problem to the students
based on the topic that was just taught during the live-coding
session and asks them to write code for this problem. The instructor
provides the needed scaffolds by writing some skeleton code or
algorithm or data structure that is needed to solve the problem.
The instructor also walks around the classroom (sometimes the
teaching assistants are also present) to help the students as and
when needed.

In the last stage, named as the fading stage, the teacher removes
the scaffolds so that students can learn to do the task by themselves.
In an apprenticeship model, this is the phase when the students
try to master the skills on their own without any support from
the teacher. In a live-coding classroom, this can be compared to
the instructor giving some take-home programming assignment
without any skeleton code (i.e., without any scaffolds) so that the
students may try to work on their own and develop the skill of
programming.

Cognitive apprenticeshipmodel has beenwidely applied in teach-
ing programming to novices with positive effects [2, 4, 11, 18]. These
successes suggest that cognitive apprenticeship model is a suitable
model for teaching and learning computer programming for novices.
Live-coding is a pedagogical approach for teaching programming
which is based on this model of cognitive apprenticeship and so we
believe that it is important to understand the learning benefits of
live-coding from the students’ perspective.

4 METHODOLOGY
In this section, we explain the methodology that we used to conduct
the experiment and to collect the data. We would like to remind the
reader that this experiment was originally designed for evaluating
the effectiveness of using a students’ native language along with
English for teaching programming and that live-coding was one
of the methods that were used for teaching programming during
this intervention. We begin by describing the participants in our
research.

4.1 Participants
The experiment was conducted in a well reputed Engineering col-
lege in Chennai, Tamil Nadu, India. Two groups of first-year stu-
dents, enrolled in two different sections of a data structures course
were selected for the study. One group was treated as the control
group and the other group was treated as the experimental group.
The total number of students in the control and the experimental
group were 52 and 51 respectively. All these students have previ-
ously taken a programming course in C [10] and data structures
was their second programming course.

4.2 Experimental Procedure
The following activities were performedwith both the control group
and the experimental group as a part of our intervention. There
was a pre-test, three in-class lectures, a live-coding session, and a
post-test. The programming (coding) was done in C [10] (a high-
level programming language) and the questions in the pre-test and
the post-test were in English for both groups. We collected an open-
ended feedback from the students in both groups to understand
what they felt about our intervention.

Koli Calling ’18, November 22–25, 2018, Koli, Finland A. G. Soosai Raj et al.

We intentionally omit the details of the pre-test, three classroom-
based lectures, and the post-test from this paper since they are not
relevant to the topic of this paper. We refer the reader to [16] to
understand more details about these steps in the experimental pro-
cedure. We mainly focus on the live-coding session we conducted
and the open-ended feedback we collected from the students.

4.2.1 Live coding session. Following the three classroom-based
lectures on linked lists, a live-coding session [14] was conducted
for about 90 minutes. The instructor projected his laptop on a
screen, and wrote C code for the following linked list functions
from scratch:

(1) adding a node at the beginning of the linked list
(2) printing all the elements in the linked list
(3) deleting all the nodes from the linked list
The instructor was thinking aloud throughout the live-coding

session. He showed the students how he would go about writing the
code for these three functions. He also showed them some common
sources of errors while writing code for linked lists. The content
taught during the live-coding session was the same for both the
control group and the experimental group.

The main differences between the live-coding session for the two
groups were the following: The live-coding session was conducted
only in English for the students in the control group. Also, the
students in the control group were required to communicate with
the instructor and their classmates during the live-coding session
only in English.

On the other hand, the live-coding session was conducted using
both English and Tamil in the experimental group, and the students
were free to communicate in any of those two languages, whichever
they felt more comfortable with, during the live-coding session.

4.2.2 Open-ended feedback. We collected open-ended feedback
from the students about our teaching methodologies. All the stu-
dents in both groups wrote their feedback in English, although the
choice of language for the feedback was left to the students.

The data we used for our analysis in this paper is this open-ended
feedback that was collected from the students after our intervention.
It was interesting to find that even though our intervention mainly
focused on finding the effectiveness of students’ native language for
learning programming, many students have explicitly mentioned
the usefulness of the live-coding session that we used as a part of our
intervention, in their open-ended feedback. This made us interested
in analyzing this student feedback data with the intent to find the
value of live-coding for teaching introductory programming.

A sample open-ended feedback from a student is shown in Fig-
ure 1. In this sample feedback, we can see that the student has
mentioned the usefulness of both the mixed language instruction
and live-coding.

The complete open-ended feedback from the students in the
experimental group and the control group can be found at http:
//bit.do/feedback_experimental and http://bit.do/feedback_control
respectively.

5 DATA ANALYSIS
In this section, we describe our data and the analytic methods
that we used to analyze the student feedback data to answer our

Figure 1: A sample open-ended feedback.

research questions. We also explain our rationale behind choosing
these analytic methods.

The type of data (i.e., open-ended student feedback) we had
and the research question that we were trying to answer made us
choose Grounded Theory for our data analysis. We were interested
in analyzing every student feedback that mentiond live-coding and
develop a theory around the various themes, concepts, and cat-
egories that evolve from the data. We believe that building this
theory grounded on our data would enable us to answer our re-
search question about the value of live-coding as an instructional
strategy from the students’ perspective.

The different steps that we performed in our data analysis are: (1)
Data filtering, (2) Coding, (3) Categorizing, and (4) Theory building.

5.1 Data Filtering
The first step in our data analysis process was to filter out the
student feedback data that explicitly mentiond live-coding. This
was a necessary step in our data analysis since not all students
mentiond live-coding in their feedback. This enabled us to focus
only on the data of interest for answering our research questions.
This step also helped us in reducing the amount of data that we’ll
be coding as a part of our next step.

We took a print of the student feedback and marked all the feed-
back that mentioned something about live-coding using an asterisk
(*) sign. This was done so that we may focus only on this filtered
feedback in the next stage of our data processing (i.e., coding). The
criteria for a student feedback to pass this filter is by having any
one of the following terms: live-coding, live-programming, cod-
ing session, programming session, in-class programming, coding
demo, programming demo, and some variants of these terms (e.g.,
interactive coding).

A sample feedback that passed our filtering test is shown below:
“This lecture is really interesting and interactive. That practical

live coding is the best part in it. Actually, the most convenient way
for teaching computer programming is to have a board at one end
to explain the logical view of the problem and at the other end there
should be live coding to implement the logic using code. I always
prefer this. Maybe this could help in better understanding.”

5.2 Coding
In this stage of our data analysis, we read all the feedback that were
filtered from the previous stage and underlined the sentence(s)
in these feedback that mentioned something about live-coding.

http://bit.do/feedback_experimental
http://bit.do/feedback_experimental
http://bit.do/feedback_control

Role of Live-coding in Learning Introductory Programming Koli Calling ’18, November 22–25, 2018, Koli, Finland

While underlining the different sentences, we also added a code that
we thought best summarized the idea described in that particular
sentence.

Coding was done at the granularity of a sentence. In other words,
code(s) were assigned to individual sentences. Usually only one
code was assigned for each sentence but if needed multiple codes
were assigned to the same sentence. For example, as shown in
sample_coding1, the codes “interesting” and “helpful” were assigned
to the following sentence: “The coding sessionwas really interesting
and helpful.”

If a single student feedback contained more than one sentence
that mentioned live-coding, we used different color codes to clearly
identify which code corresponds to which sentence in the feedback.
See the first students’ feedback in sample coding (footnote 1 below)
to understand how this was done while coding.

Note that the color codes weren’t created to group the codes
into categories but rather to distinctly differentiate the different
codes that were assigned to multiple sentences that were nearby
(e.g., within the feedback from a single student).

Codes were generated using the keywords in the first few feed-
back. For coding the rest of the feedback, if a sentence matched
the idea represented by a particular code, then the same code was
reused but if a sentence did not fit into any of the codes that were
already present, then a new code was created.

5.3 Categorizing
Once our codes were created and finalized, we were interested in
grouping them into related categories. In this section, we explain the
process that we followed to group the related codes into different
categories.

We went through the generated codes multiple times so that we
may get some high-level idea about the different categories these
codes may be grouped into. After going through the codes multiple
times, we came up with the following four categories:
(1) Positives: Benefits of live-coding
(2) Debugging: Live-coding as a means to learn debugging
(3) Negatives: Things to improve during live-coding
(4) Long-term benefits: Learning useful skills from live-coding

The different codes that are part of these four high-level cate-
gories are shown in categories2. If the same code appeared multiple
times, then those codes were marked with additional vertical lines
near them. The schemewe followed here was that the first four lines
will be vertical and the fifth line will be crossing over these first
four lines diagonally so that we may group these lines as groups of
five. For example, the code “better understanding” in the “positives”
category had occurred 7 times (5 + 2) in the feedback data (see the
Figure in footnote 2).

The categories we created gave us a better understanding of the
different ways in which live-coding is useful as an instructional
technique for students learning programming. For example, before
we started categorizing the codes into categories, we didn’t know
that live-coding helped students understand the process of debug-
ging. Similarly, we also didn’t realize that live-coding taught some
useful skills that students may use in the long run (e.g., indenting
1http://bit.do/sample_coding
2http://bit.do/sample_categories

their code, thinking like a programmer, connecting the theory and
practice of programming, etc). The process of categorization paved
the foundation for developing some useful theories about the value
of live-coding for learning programming.

Some sample lines from the student feedback that were catego-
rized under these categories are shown below:
(1) Positives: Benefits of live-coding
“The live coding demo shown increased a little of my programming
skills. It was very good and in this way I can develop my programming
skills.”; “I actually found the live coding program very helpful, it was
like very easy to understand other than just teaching us the theoretical
concepts of programming during class hours.”; “Live coding demos
were great and helped us. Hope to become a better programmer from
today.”
(2) Debugging: Live-coding as a means to learn debugging
“The live coding session helped to understand the possible bugs that
occurs while coding.”; “The live coding session was really useful. In
that session, I came to know about the errors what we do while coding.”
“We felt good to have a live coding classes. Though it takes time, it is
very useful in understanding the code and rectifying the errors and
mistakes thereby itself.”
(3) Negatives: Things to improve in live-coding
“Live coding session was good. It could have been more useful if each
and every student can type the code as they see on the project so that
they too can participate in it.”;
(4) Long-term benefits: Learning useful skills from live-coding
“It is the first time I have been in a class of interactive coding session
where you learn while you code. This way of approach has definitely
helped me (a beginner in data structures) understand linked list easily.
I guess this lecture has sown the seed for me as well as my classmate
to do programming like how a programmer would do.”

5.4 Theory Building
In this section, we explain the data and the processes we used
for creating the theories on live-coding and our rationale behind
why live-coding is a useful pedagogical technique for teaching
programming to novice programmers.

5.4.1 How does live-coding help understand the process of pro-
gramming? When students begin to learn programming, usually
they don’t have a good idea about where to start, how to break
down a program into multiple smaller parts, when to define func-
tions, the order in which the functions should be implemented, etc.
So, if the only thing that the students see in class are pre-coded
working examples of code, they might get a wrong impression
that their code should look similar when they write it in their first
try. When they find out that they are not able to produce working
code for their programming assignments similar to the ones they
saw in class, they might develop inferiority complexes about their
programming skills.

Learning Benefits. Linked lists was the first data structure that
was taught to these students that used dynamic memory allocation.
Although the learning curve is very high when beginning to learn
linked lists since it involves difficult concepts like self-referential
structures, the students felt that the live-coding session helped
them to understand the concept of linked lists in a better way than

http://bit.do/sample_coding
http://bit.do/sample_categories
http://bit.do/sample_coding
http://bit.do/sample_categories

Koli Calling ’18, November 22–25, 2018, Koli, Finland A. G. Soosai Raj et al.

the traditional approach of using pre-coded code examples that
these students were previously used to. Sample student comments
include: “Linked list is the new concept for me and hence working out
this lively in the live section of coding helped us to avoid the errors
and helped us to understand more clearly.” “The live coding session
was helpful to understand the concepts that were theoretically taught
in the class.”

5.4.2 How does live-coding help students learn the art of debug-
ging? Debugging is an important skill in programming which is
mostly ignored when programming is taught only using pre-coded
examples. This is mainly because the instructor writes the pre-
coded examples while preparing for the lectures and makes sure
that there are no bugs in the code so that (s)he can use it for explain-
ing a particular programming concept. In live-coding, even though
the instructor may have tried coding the example beforehand, it’s
usually the case that some bugs may occur in the instructor’s code
while performing a live-coding session. This gives the opportunity
for explaining the process of debugging when it is most needed. For
example, if the bug is easy to find, the instructor may use simple
print statements to find the bug or in case of more difficult bugs
the instructor may use a debugger to find the bugs. Even though
this process may be time-consuming sometimes, it’s one of the
best opportunities for the students to learn the art of debugging as
they can see an expert debug his/her code right in front of them.
Even if an instructor writes code without any errors, (s)he may
intentionally introduce the errors in their code with the intention
to teach students this useful skill.

Many students mentioned that live-coding helped them under-
stand the process of debugging. “The online (live) coding session was
very useful as we could witness the most commonly faced errors.”;
“The live coding session helped to understand the possible bugs that
occurs while coding.”; “Linked list is the new concept for me and hence
working out this lively in the live section of coding helped us to avoid
the errors and helped us to understand more clearly.”; “The live coding
session was really useful. In that session, I came to know about the
errors what we do while coding.” “Though it takes time, it is very use-
ful in understanding the code and rectifying the errors and mistakes
thereby itself.”; “Coding and teaching simultaneously gave us an idea
about frequently occurring bugs.”

5.4.3 Things to improve during a live-coding session. Since our
intervention was mainly designed to understand the benefits of
bilingual CS education, we didn’t try to conduct our live-coding
session in a lab where the students too would have access to com-
puters. Usually, live-coding is more effective if students can follow
along with the instructor by writing their own code on their com-
puters. Even though the instruction is usually led by the instructor,
if students are able to follow along they will be more engaged in
the class. Some students expressed this concern as shown in the
category on the negatives of live-coding in Section 5.3.

Some students expressed concerns about learning a lot of content
within a limited amount of time. We taught the topics of creating
a node structure, adding an element at the end of the linked list,
printing a linked list, finding the length of the linked list, deleting
an element from the linked list, and freeing all the nodes in a linked
list during the 90-minute live-coding session. We acknowledge
that this may have been overwhelming to some students as seen

from these sample student comments: “The live coding session was
understandable but it is not fair to teach the whole code in a short
period. Other than this it was an awesome class.”; “Very useful lectures.
Understood almost everything regarding the topic. And also how to
actually write code in a professional way, how to start a problem.
The only small issue was time. As a biology student, it was a bit too
overwhelming for me. Maybe if it was stretched over more classes, it
would have been better.”.

5.4.4 What are the long-term benefits of live-coding? Some stu-
dents expressed their opinions on how the things they learnt during
the live-coding session may have some long-term benefits for them
as future programmers. Live-coding also helped students in under-
standing the link between the theory and practice of programming
concepts.

Increased interest in programming. Students mentioned that the
live-coding session increased their interest in learning program-
ming and problem solving. Sample comments include: “The class
was super fun and I was able to concentrate without any distractions
because of the way you explained linked lists. The live coding session
was very helpful and I would miss your classes. I always wanted to
run out of the class as soon as the time is up. But your classes made
me want more of such explanation making me wanting more to learn
programming and the way of solving problems using code more pre-
cisely so as to emerge as a tech fellow.” “The live coding demo shown
increased a little of my programming skills. I would prefer an extra
classes of these teaching methods. It was very good and in this way I
can develop my programming skills.”

Connecting theory with practice. The live-coding session gave
the students some idea about how the theoretical concepts taught
during the in-class lectures (e.g., diagrammatically explaining the
process of adding or deleting a node in a linked list) is actually
related to the practice of programming (i.e., how to actually imple-
ment them in code).

Sample student comments include: “I actually found the live
coding program very helpful, it was like very easy to understand other
than just teaching us the theoretical concepts of programming during
class hours. There were no cons actually. I really could not believe I was
able to focus one full hour in class without being distracted even for a
minute. Though linked list looked like a vague topic, through various
teaching strategies taken by you, I was able to get an overall clear
idea on the concept. I also learnt the different ways of programming
on how to approach problem etc.”; “The idea of live coding is very
useful as we get to see how the theoretical concepts work.”

6 DISCUSSION
In this section, we provide an interpretation of our results, state
the limitations of our study, and provide some directions for future
work.

6.1 Interpretation of Results
The major findings of our study are the following theories on the
value of live-coding from the students’ perspective:
(1) Live-coding is a useful pedagogical tool to help students under-
stand the process of programming.

Role of Live-coding in Learning Introductory Programming Koli Calling ’18, November 22–25, 2018, Koli, Finland

(2) Live-coding helps students to understand the process of debug-
ging (i.e., identifying and correcting the bugs in a program).
(3) It may be better to involve students in the process of live-coding
by making them code along with the instructor on their own laptop
as opposed to the instructor writing the code and the students being
mere observers.
(4) Live-coding may have some long-term benefits for the students
(e.g., learning program design and indentation, increased confidence
in their programming skills, etc.) that may help the students in their
future programming careers.

Our findings suggest that students value live-coding as an ef-
fective pedagogical tool for learning programming. The reasons
for this may be because live-coding makes the thinking process
of the instructor visible to the students and they are able to learn
the process of programming as opposed to seeing the final product
(pre-coded code examples). Our findings may be valuable for an
instructor who would like to use live-coding in his/her introductory
programming class but is unsure of its benefits from the perspective
of the students.

Our results show that live-coding which is based on the cognitive
apprenticeship model is a viable method to teach programming.
They also suggest that while teaching programming, focusing on
the process of writing a program is as important as it is to focus on
the end product (i.e., a working program). This shows that teaching
methods based on cognitive apprenticeship should be explored
more in the area of Computer Science Education.

Majority of the results from the previous studies on live-coding
(shown in Section 2) show that students prefer live-coding over
traditional lectures for learning programming. Our study builds
on top of these prior work and adds value to the literature on live-
coding by explicitly dissecting the major reasons for the students
to consider live-coding as a valuable instructional technique for
learning programming. Our results also show some ways that live-
coding could be improved.

An alternative explanation of the results could be that since our
students experienced a live-coding session for the first time in their
lives, they may have become overly enthusiastic about this teaching
method and this may have motivated most of the students to write
great things about live-coding. But some of the previous results on
students’ preferences on live-coding [12, 15] were collected at the
end of the semester. By this time the students were used to this
approach and still they seemed to have preferred live-coding for
learning programming.

6.2 Limitations
Our study was primarily conducted to find the effectiveness of
using the students’ native language for learning programming. We
used live-coding just as a component of our teaching methodology
and initially weren’t interested in gathering data on live-coding.
Therefore, we didn’t collect any specific data on the effectiveness
of live-coding at the end of our intervention. All the data that
we presented in our study was part of the overall feedback that
students provided for the following prompt: ‘Feedback for linked
list lectures’ (also shown in Figure 1). Because of this the data that
we had for our analysis was very limited. Only if we had asked some
specific question about live-coding at the end of our intervention,

we believe that we would have been able to collect more valuable
data than what we currently have.

6.3 Future Work
Based on our findings, we know that live-coding is an invaluable
tool for teaching programming to novices. Live-coding may not
be a valuable tool for people who already know programming. For
example, students who already know a programming language (e.g.,
Java) and who are learning a new programming language (e.g., C++)
may not appreciate the value of live-coding since they may have
already learnt the process of programming while learning their
first programming language. It would be interesting to conduct a
study to find out the value of live-coding as a pedagogical tool for
learning programming from the perspective of people who already
know a programming language.

In our current study, we didn’t gather any specific data on live-
coding using surveys/questionnaires since our original intervention
was not geared towards studying the role of live-coding. Although
our intervention was not targeted towards live-coding, based on the
student feedback, it seems that live-coding is a valuable technique
for teaching introductory programming. Therefore, we propose that,
in order to know more about live-coding, we need more controlled
experiments mainly targeted towards this teaching technique. By
doing so, we would be able to understand the pros and cons of
live-coding in much more detail.

7 CONCLUSION
We conclude that live-coding is a valuable pedagogical technique
for learning programming as it helps students to understand the
process of programming by making the instructor’s thinking visible,
helps students learn valuable debugging skills, and helps students
by introducing them to good coding practices. We also found that it
may be better to involve students during the process of live-coding
by making them code along with the instructor.

ACKNOWLEDGMENTS
We thank Prof. Saswati Mukerjee and Prof. Arockia Xavier Annie
for helping us conduct experiments in India.

REFERENCES
[1] Jens Bennedsen and Michael E Caspersen. 2005. Revealing the programming

process. In ACM SIGCSE Bulletin, Vol. 37. ACM, 186–190.
[2] Toni R Black. 2006. Helping novice programming students succeed. Journal of

Computing Sciences in Colleges 22, 2 (2006), 109–114.
[3] Russel E Bruhn and Philip J Burton. 2003. An approach to teaching Java using

computers. ACM SIGCSE Bulletin 35, 4 (2003), 94–99.
[4] Michael E Caspersen and Jens Bennedsen. 2007. Instructional design of a pro-

gramming course: a learning theoretic approach. In Proceedings of the third
international workshop on Computing education research. ACM, 111–122.

[5] Allan Collins, John Seely Brown, and Ann Holum. 1991. Cognitive apprenticeship:
Making thinking visible. American educator 15, 3 (1991), 6–11.

[6] Allan Collins, John Seely Brown, and Susan E Newman. 1989. Cognitive appren-
ticeship: Teaching the crafts of reading, writing, and mathematics. Knowing,
learning, and instruction: Essays in honor of Robert Glaser 18 (1989), 32–42.

[7] Rex E Gantenbein. 1989. Programming as process: a “novel" approach to teaching
programming. In ACM SIGCSE Bulletin, Vol. 21. ACM, 22–26.

[8] Alessio Gaspar and Sarah Langevin. 2007. Restoring coding with intention
in introductory programming courses. In Proceedings of the 8th ACM SIGITE
conference on Information technology education. ACM, 91–98.

Koli Calling ’18, November 22–25, 2018, Koli, Finland A. G. Soosai Raj et al.

[9] Nasser Giacaman. 2012. Teaching by example: using analogies and live cod-
ing demonstrations to teach parallel computing concepts to undergraduate stu-
dents. In Parallel and Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW), 2012 IEEE 26th International. IEEE, 1295–1298.

[10] Brian W Kernighan and Dennis M Ritchie. 2006. The C Programming Language.
(2006).

[11] Michael Kölling and David J Barnes. 2004. Enhancing apprentice-based learning
of Java. In ACM SIGCSE Bulletin, Vol. 36. ACM, 286–290.

[12] John Paxton. 2002. Live programming as a lecture technique. Journal of Comput-
ing Sciences in Colleges 18, 2 (2002), 51–56.

[13] Adalbert Gerald Soosai Raj, Kasama Ketsuriyonk, Jignesh M Patel, and Richard
Halverson. 2017. What Do Students Feel about Learning Programming Using
Both English and Their Native Language?. In Learning and Teaching in Computing
and Engineering (LaTICE), 2017. IEEE, 1–8.

[14] Marc J Rubin. 2013. The effectiveness of live-coding to teach introductory pro-
gramming. In Proceeding of the 44th ACM technical symposium on Computer
science education. ACM, 651–656.

[15] Amy Shannon and Valerie Summet. 2015. Live coding in introductory computer
science courses. Journal of Computing Sciences in Colleges 31, 2 (2015), 158–164.

[16] Adalbert Gerald Soosai Raj, Kasama Ketsuriyonk, Jignesh M Patel, and Richard
Halverson. 2018. Does Native Language Play a Role in Learning a Programming
Language?. In Proceedings of the 49th ACM Technical Symposium on Computer
Science Education. ACM, 417–422.

[17] Adalbert Gerald Soosai Raj, Jignesh M Patel, and Richard Halverson. 2018. Is
More Active Always Better for Teaching Introductory Programming?. In Learning
and Teaching in Computing and Engineering (LaTICE), 2018. IEEE.

[18] Arto Vihavainen, Matti Paksula, and Matti Luukkainen. 2011. Extreme appren-
ticeship method in teaching programming for beginners. In Proceedings of the
42nd ACM technical symposium on Computer science education. ACM, 93–98.

	Abstract
	1 Introduction
	2 Related Work
	3 Theoretical Background
	4 Methodology
	4.1 Participants
	4.2 Experimental Procedure

	5 Data Analysis
	5.1 Data Filtering
	5.2 Coding
	5.3 Categorizing
	5.4 Theory Building

	6 Discussion
	6.1 Interpretation of Results
	6.2 Limitations
	6.3 Future Work

	7 Conclusion
	Acknowledgments
	References

