
Is More Active Always Better for Teaching
Introductory Programming?

Adalbert Gerald Soosai Raj
Computer Sciences and Education

University of Wisconsin-Madison

Madison, Wisconsin, USA

Email: gerald@cs.wisc.edu

Jignesh M. Patel
Department of Computer Sciences

University of Wisconsin-Madison

Madison, Wisconsin, USA

Email: jignesh@cs.wisc.edu

Richard Halverson
Department of Educational Leadership

and Policy Analysis

University of Wisconsin-Madison

Madison, Wisconsin, USA

Email: rich.halverson@wisc.edu

Abstract—Introduction to programming is usually taught using
a wide range of instructional techniques. Some common tech-
niques among them are mini-lectures, live-coding and in-class
coding. Each of these three techniques require varying level of
student activity. In this study, we taught programming to a group
of students using these three techniques. We collected data in the
form of a survey to understand the students’ perceptions on these
three instructional techniques. The results suggest that students
like techniques that require a moderate level of student activity
(e.g., live-coding) more when compared to techniques that require
a great deal of student activity (e.g., in-class coding). We believe
that our work has the potential to help instructors design their
instructional techniques using a student-centric approach.

Index Terms—Active-learning; live-coding; mini-lectures; in-
class coding;

I. INTRODUCTION

Introduction to programming is usually taught using a

variety of instructional techniques like traditional chalkboard

based lectures, powerpoint presentations, live-coding (i.e.,

writing a program on a computer from scratch), in-class coding

(asking the students to write some code on their own to solve

a programming problem), etc. Among the many techniques

that are employed to teach programming to beginners, the

most commonly used techniques are mini-lectures [1], live-

coding [2] and in-class coding [1].

These three pedagogical strategies require varying levels of

student activity. Students usually listen, understand concepts,

and take notes during a mini-lecture. During live-coding, stu-

dents listen, understand code, code along with the instructor,

draw some memory diagrams [21], and take some notes in

the form of comments in their programs or separately in

their notebooks. In an in-class coding activity, students are

expected to code by themselves. So, they have to read some

specifications about what the code should do, think about the

logic for the program, write some pseudo code, look up some

references for syntax (e.g., Javadoc), write a program, compile

it, and debug it until it works.

Based on the level of student activity needed, these three

instructional strategies are ordered as shown below in the order

of increasing student activity.

1) Mini-lecture (least active)

2) Live-coding

3) In-class coding (most active)

Although these three instructional strategies are used com-

monly by instructors for teaching introductory programming,

a study of students’ perceptions of these three pedagogies in

Computer Science is fairly limited. Similarly, even though

there are numerous reports that show the effectiveness of

the active learning instructional techniques in Computer Sci-

ence [4], [5], [6], [7], [8], [9], a comparison of students’

perceptions on these instructional techniques is missing. In

other words, the answer to the following question is still

unknown.

“Do students prefer instructional techniques that require them
to be more active during class when compared to techniques
that may require only moderate or minimum level of student
activity?”

In this study, we present some preliminary results on stu-

dents’ perceptions of the three instructional techniques (i.e.,

mini-lectures, live-coding, and in-class coding) that were used

for teaching an introductory programming course using an

active learning approach. Using the students’ perceptions, we

rank these three instructional techniques based on students’

preferences.

We believe that by using a student-centric approach for un-

derstanding students’ perceptions on instructional techniques,

our work has the potential to spark future research in this

direction, where the instructors consider the students’ point of

view too while designing instructional techniques for teaching

introductory programming.

II. RELATED WORK

Byron S. Gottfried in his experience report [1] highlights

the importance of mini-lectures and in-class coding activities

for effectively teaching introductory programming. He also

discusses the disadvantages of traditional techniques like 50-

minute lectures and the use of detailed examples written on a

chalkboard and states that they should be avoided. This work

shows the effectiveness of mini-lectures and in-class coding
from the instructor’s perspective. We consider our study to

be an extension to this report, where we mainly focus on

students’ perceptions on three commonly used active learning

techniques (including live-coding) used to teach introductory

programming.

103

2018 International Conference on Learning and Teaching in Computing and Engineering (LaTICE)

2475-1057/18/$31.00 ©2018 IEEE
DOI 10.1109/LaTICE.2018.00006

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 03,2022 at 19:14:49 UTC from IEEE Xplore. Restrictions apply.

The importance of using both instructor led presentations

and in-class student activites in an active learning class for

Computer Science are reported by McConnell in his study

on active learning and its use in Computer Science [4]. He

suggests instructors to have a mini-lecture component at the

beginning of the lecture mainly to discuss the concepts that

are critical or may be difficult to understand from the students’

perspective. Similarly, in our study, we used a combination

of instructor led mini-lectures and in-class student activites.

We also added an additional live-coding component and we

mainly focused on reporting the students’ perceptions on these

techniques.

In flipped courses, students use out of class time to watch

pre-recorded lectures or read text books and use the time in

the class for labs or discussions. Baldwin describes his expe-

rience with a flipped class model for teaching an introductory

programmimg course to non-major (Maths) students [10]. The

students in this study have reported dissatisfaction with active

learning since they felt that the flipped classrooms abandoned

students to learn on their own from the videos and the readings.

Based on this finding, in our work we made sure that we

have a mini-lecture component before we start the more active

components like live-coding and in-class coding.

Machemer and Crawford conducted a study [11] in a

single cross discipilinary class to assess the students’ value

about traditional, active, and co-operative classes. The study

found that students valued the lectures the most. Co-operative

learning was not a favourite for the students as they did not

want to be responsible for their group’s learning. Also, they

found that whichever method yielded the best results in exams

was most valued by the students.

In this study [12] by Lumpkin et. al., college students

from 5 college courses (related to Sport Management, Human

Sexuality, Sport Finance, Exercise, and Ethics in Sports) were

taught using short lectures, various in-class and out-of-class

exploratory assignments, group discussions and other engaging

activities. They found that students felt that active learning

positively impacted their learning.

Smith and Cardaciotto compared students’ perceptions of

active and passive activities [13]. In an introductory psy-

chology class, students were divided into two groups for

completing out-of-class group exercises for learning the course

materials. One group was given active learning exercises while

the other group performed content review activities (passive

learning). Though the students in the active learning group

reported greater retention of and better engagement with the

course material, they did not report greater enjoyment while

doing those activities when compared to the passive learning

group. In our study, we rank three instructional techniques

used in Computer Science, that require varying levels of

student activity based on students’ perceptions.

Prior works have also considered exploring alternate ped-

agogical approaches. Van Gorp and Grissom [14] explore

constructive and collaborative learning in introdcutory pro-

gramming classrooms, and empirically evaluate these tech-

niques. Further, Rathika [15] studies a games-based approach

to teaching and Simon et al. [16] report experiences about

peer instruction in introductory computing. In contrast, our

work focuses primarily on understanding student’s perception

of the three commonly used instuctional techniques used in an

active learning Computer Science classroom.

III. RESEARCH QUESTION

The following are our research questions:

1) What difference (if any) is there in the way computing

students perceive instructional techniques that require

varying levels of student activity? Or in other words,

“Is more active always better for learning introductory

programming?”

2) How do students perceive an active learning classroom

that uses a combination of mini-lectures, live coding, and

in-class coding for teaching introductory programming

when compared to a traditional lecture-based classroom?

IV. METHODOLOGY

In this section, we describe the course details and three

techniques (mini-lectures, live-coding, and in-class coding)

used to teach introdcutory programming in detail. We also

describe the survey that was used to understand students’

perceptions of these three instructional techniques individually

and our active learning methodology as a whole.

A. Course Details

The introductory programming course in this study was

taught at a large, research-intensive, public university in Sum-

mer 2016 for 8 weeks using mini-lectures, live-coding, and

in-class coding. There were a total of 76 students in the class

from various disciplines. The class comprised of 20 graduate

students and 56 undergraduate students. There were 4 class

meetings every week from Monday to Thursday, each 75

minutes duration. There were no separate lab sessions. The

regular class meetings were organized in a way that they

served the purpose of both the lectures and the lab sessions. A

typical active-learning classroom similar to the ones used in

the SCALE-UP project [17] was used for teaching this course.

Even though the classroom had laptops for every student, most

of the students preferred to use their own laptop.

Each class meeting was roughly split among the following

three components as follows:

1) Mini-lecture: 20 to 30 minutes

2) Live-coding: 30 to 40 minutes

3) In-class coding: 15 to 20 minutes

The same structure as described above was used for teaching

all the classes throughout the semester except three classes that

were used for review sessions and two classes that were used

for in-class exams. In the following section, we describe the

first technique that we used for teaching, namely mini-lectures.

104

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 03,2022 at 19:14:49 UTC from IEEE Xplore. Restrictions apply.

B. Mini-lectures

The initial 20 to 30 minutes of the class time was spent for

lecturing. The instructor introduced a sample problem with the

intention to help students understand that it may be difficult

or even impossible, to implement a solution for this problem

using the programming constructs that they had studied till

then. For example, before introducing arrays, the instructor

started the lecture with the following problem:

“In last class, we wrote a program for finding the maximum
of three numbers. What should we do if the problem is to find
the maximum of ten numbers?”

This made the students to think about this problem and come

up with solutions like: “We can create 10 variables for each
number and then find the maximum of them using multiple if-
else statements to find the maximum of these 10 numbers.”
The instructor tried to show the students how difficult or

cumbersome it may be to write code to find the maximum

of 10 numbers using 10 separate variables.

Some students who had some programming background al-

ready may said, “We should use arrays to solve this problem!”
At this point, using this initial discussion as a motivation,

the idea of arrays was discussed. We acknowledge that we

really do not need arrays to find the maximum of 10 numbers

since a loop will do. Although a problem like finding all the

numbers larger than the average is more relevent for arrays,

we preferred to start with simple problems and then move on

to more complicated ones.

In each mini-lecture, the following pedagogical tools were

used to make the lectures as interesting as possible:

1) Analogies: Whenever possible, the instructor used an

analogy to help students to understand a programming concept

during the lecture. For example, to help students understand

the idea that the actual array elements that are created on the

heap are actually different from the reference variable for the

array that is created on the stack, the following analogy was

given:

“Let us assume that my house is located at the following

address: 206 Eagle Heights, Apt J, Madison, Wisconsin 53705.

If I invite my friend to my house, then I’ll write the address

of my house on a sheet of paper and give it to him/her. Now,

using that paper as a reference, my friend would be able to

locate my house and come and visit me.”

In a similar way, the actual array (i.e., the house) is

different than the array reference variable (i.e., the sheet of

paper with the house’s address on it) that is used to access

the array. This analogy was inspired from a stack overflow

question1. The usefulness of analogies and metaphors for

teaching programming is also discussed in the literature [18],

[19]. Although analogies are helpful for short term learning

gains, there is no evidence that they are helpful for long term

learning gains [20].

2) Diagrams: “A picture is worth a thousand words”.

Visual representations in the form of memory diagrams, flow

charts, class diagrams, state diagrams, etc., were used in

1http://bit.do/pointer analogy

almost every lecture to help students visualize the ideas of

programming.

For example, when explaining the idea of array creation, the

diagram in Figure 1 was drawn in order to explain what each

part of the array creation statement meant and to visually show

what happened in the computer’s main memory when each

part of that statement was executed. The order of execution

of the different parts of this statement was shown using steps

numbered 1 to 3. The usefulness of these memory diagrams

for teaching programming can be found in [21].

Fig. 1. The step-wise memory diagram for the creation of an array in Java.

The mini-lecture component usually lasted for no more than

30 minutes. It was essential to ensure that all the students

had some basic understanding of the programming concept(s)

before we wrote some code using those concepts in the next

two parts of the class (i.e., live-coding and in-class coding).

C. Live-coding Session

Live-coding [2] is a pedagogical approach for teaching

programming where the instructor writes actual code from

scratch (i.e., without using any skeleton or boilerplate code)

on a computer connected to a projector during the class. The

main purpose of a live-coding session is to teach programming
as a process [22], [23]. This approach helps students to fully

understand the tasks and techniques that are needed to write a

fully-working program, after going through multiple iterations

of thinking, designing, coding, and testing. At the end of a live-

coding session, along with learning the programming process,

the students would also learn the syntax of the programming

construct that was discussed during the coding session. The

effectiveness of live-coding for teaching introductory program-

ming is discussed in [24].

The instructor spent around 30 to 40 minutes during every

class for live-coding. At the beginning of every coding session,

the instructor spent some time to make the students feel

comfortable with the syntax of the programming construct that

was taught (e.g., while teaching arrays, the instructor wrote

code for creating an array in all possible ways in Java). Then,

105

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 03,2022 at 19:14:49 UTC from IEEE Xplore. Restrictions apply.

the instructor revisited the problem that was discussed during

the start of the lecture (e.g., To find the maximum element

from a list of 10 numbers) and discussed one possible (and

simple) approach to solve the problem. Immediately after this

discussion, the Java code to solve this problem was written in a

step-by-step manner by interacting with the students, for each

and every step in the process. Throughout this entire session,

the instructor thought aloud so that the students would be

able to understand the thought process of the instructor while

he was writing code. The importance of incremental coding
(i.e., writing a few lines of code and immediately testing them

before writing the next few lines of code) was emphasized

throughout the live-coding session. Our live-coding session

followed an approach similar to the one explained in Bruhn

and Burton’s approach for teaching Java using computers [25].

During live-coding, sometimes the instructor purposefully

introduced some bugs into the program. e.g., Using the as-

signment operator (=) instead of the equality operator (==). A

few times some unexpected bugs showed up in the instructor’s

code. These scenarios created ample opportunities for the

students to observe and learn how an expert would fix these

issues using techniques like print statements for simple bugs

and tools like the debugger for more complex bugs.

The instructor wrote code by following the indentation

guidelines that were required for the course during the live-

coding session. Since the students were coding along with

the instructor, most of them started indenting their code after

every few minutes. Also, in the first few lectures, the instructor

wrote descriptive comments for his code, so that the students

understood the importance and the usefulness of commenting

their code. In later lectures, the instructor wrote very few

comments in his code as a measure to save time during the

live-coding session.

Whenever the instructor used some methods from the Java

library, he explained how to search the Javadoc or Google

to find the method that we need. e.g., When the task was

to extract some specific part(s) of a String, the instructor

opened Google and typed “how to get a substring from a

string in java” and taught the students how to make use of

Stack Overflow when they program on their own. Also, the

usefulness of the Javadoc for understanding the purpose of

all the methods in a class was discussed. This approach of

learning programming based on the task at hand is termed as

Just-In-Time Learning [26].

Live-coding session helped to communicate some good

coding practices (e.g., debugging, indentation, commenting,

reading Javadoc, using Eclipse shortcuts, etc.) to the students

in almost every class so that they too used these good

coding practices while they worked on their programming

assignments and projects.

In the next section, we describe the in-class coding activity

that the students do immediately after the live-coding session.

D. In-class Coding

The in-class coding was the time during the lecture where

the students were required to write programs on their own,

compile, run, and test them for correctness. This gave the

opportunity for the students to immediately apply the concepts

that they learnt during the mini-lecture and the live-coding

components of the class. The students were usually encouraged

to discuss with their classmates while they work towards a

solution for solving the programming problem. Most of the

students worked in pairs during this time while a few of them

preferred to work on their own.

The instructor and the teaching assistants (TAs) were present

during this time to answer students’ questions. The TAs were

required to attend only the in-class coding activity component

of the lecture (approximately 20 minutes). Three teachers (1

instructor + 2 TAs) were enough for handling all the questions

that were asked by the students during this activity time.

The coding problem that was given during this in-class

activity time usually required approximately 5 to 10 minutes

to complete for an average student. Usually, more than 50%

of the students were able to complete the activity within

the given time. The in-class coding made many students to

realize how difficult it was to write code by themselves even

though they may have felt that the concepts discussed during

the lecture and the live-coding were pretty straight forward.

Usually, the students who were not able to complete the in-

class coding activity stay in the classroom for an additional 10

to 15 minutes to complete it although they were not required

to do so.

In the last 5 minutes, the instructor discussed a sample

solution for the coding activity by actually coding it in front of

the students. This discussion was intended to make the students

to understand the process needed to come up with the solution.

The instructor usually mentioned that his solution was only

one of the many possible solutions for solving that problem.

a) A sample in-class coding activity: The following

coding activity was given on the day on which arrays were

taught:

1) Create an integer array of 100 elements.

2) Initialize the array with random values from 0 to 100.

3) Find the minimum element and its index in the array.

4) If the minimum element appears multiple times in the

array, then print the index of its first occurrence only.

E. Student Survey

To understand the students’ perceptions on the three in-

structional practices that we used for teaching introductory

programming, we collected a 7-point likert scale survey from

the students at the end of the semester. This survey was

prepared with the intention to find out the degree to which the

students liked/disliked these three instructional practices. The

survey was anonymous and 75% of the students completed

the survey. The rating scale was defined as: [1 - Extremely

Useless, 7 - Extremely Useful].

1) mini-lectures: How useful were mini-lectures for learn-

ing programming?

2) live-coding: How useful was live-coding for learning

programming?

106

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 03,2022 at 19:14:49 UTC from IEEE Xplore. Restrictions apply.

3) in-class coding: How useful was in-class coding for

learning programming?

We also asked the following question to understand the com-

bined effectiveness of these three active learning instructional

techniques. The rating scale for this question was: [1 - Not at

all, 7 - Completely].

“How much did you like the active learning approach used
in this class when compared to a traditional lecture based
class?”

V. RESULTS

In this section, we present the results of our student survey

about the three instructional techniques that we used for

teaching programming. We also present the survey results

about how much students liked the active learning approach

used in this course when compared to a traditional lecture

based approach.

A. Students’ perceptions on three techniques

Fig. 2. The students’ perceptions on the usefulness of mini-lectures, live-
coding, and in-class coding for learning programming.

Figure 2 shows the summary of the students’ responses for

the three 7-point likert scale questions on the three instruc-

tional techniques shown in Section IV-E. The x-axis in this

figure represents the three instructional techniques, and the y-

axis represents the percentage of student responses for each

category in the likert scale questions. The graph shows that

live-coding is the technique that is most preferred among the

three techniques.

To better compare these three techniques based on students’

preferences, we group the responses into the following three

categories:

• Useless: 1 (Extremely useless) to 3 (Useless)

• Neutral: 4 (Neither useless nor useful)

• Useful: 5 (Useful) to 7 (Extremely useful)

Figure 3 shows a stack plot of students’ responses based on

these three categories. From Figure 3, we can observe that

live-coding is the most preferred and in-class coding is the

least preferred among the three tehniques.

Fig. 3. A stack plot comparing the students’ perception on mini-lectures,
live-coding, and in-class coding.

B. Students’ perceptions on active learning

Fig. 4. The students’ perceptions on the usefulness of active learning when
compared to traditional lectures for learning programming.

Figure 4 shows the students’ responses for the question

“How much did you like the active learning approach used
in this class when compared to a traditional lecture based
class?” From the students’ responses, we see that 87% of

the students have liked the active learning approach when

compared to a traditional lecture based class for learning

introductory programming.

VI. DISCUSSION

In this section, we provide an interpretation of our results,

discuss some of the limitations with our work, and provide

some directions for future work in this area.

A. Interpretation of results

We found that the students perceive the three components

of our course that required varying level of student activity as

shown in Table I. The three techniques are ranked based on

the amount of student activity required from 1 (least active) to

107

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 03,2022 at 19:14:49 UTC from IEEE Xplore. Restrictions apply.

3 (most active) and also based on students’ preferences from

1 (most preferred) to 3 (least preferred).

Based on these results, we found that the students’ percep-

tions of the three instructional techniques that require varying

level of student activity is not directly related to the amount

of student activity that is required by the technique. In other

words, if a technique requires more student activity, then it

does not necessarily mean that it is a better way for learning

programming from the students’ perspective.

TABLE I
RANKING OF THE THREE TECHNIQUES THAT REQUIRE VARYING LEVELS

OF STUDENT ACTIVITY BASED ON STUDENTS’ PREFERENCES.

Technique Student activity Students’ preference
Mini-lecture 1 (least active) 2
Live-coding 2 1 (most preferred)

In-class coding 3 (most active) 3 (least preferred)

The results from Figure 4 suggest that, in general, most of

the computing students prefer active learning techniques when

compared to traditional lecture based classes. These findings

provide evidence that active learning is not only preferred

by computing instructors but also by computing students. We

acknowledge that our results only suggest that students like

active learning that involves mini-lectures, live-coding, and in-

class coding. The results may be totally different in an active

learning computing classroom that uses other instructional

techniques.

We believe that our findings would help computing instruc-

tors to choose the instructional techniques to be used in their

classrooms not only based on the instructor’s preferences but

also considering the students’ perceptions of these various

techniques. By doing so, we would be able to design and

develop student-centric courses.

B. Limitations

There were some limitations with our study which we ac-

knowledge here. The students’ perceptions of the three instruc-

tional techniques in Computer Science reported in our study

are from a single group of students who learnt programming

from the same instructor. The students’ perceptions might

change when a different instructor teaches the same course

using the same instructional techniques. Therefore students’

perceptions from similar computing courses taught by different

instructors are needed in the future to really understand what

students think about these three instructional techniques for

teaching programming.

The survey and the feedback collected were answered only

by 75% of the students in the class. We did not make the

participation compulsory and the reviews were anonymous

since we felt that the student perceptions may be biased, if

the reviews were not anonymized. If the 25% of the students

who did not voice their opinions had any negative experiences

with these instructional strategies, then they were not captured

in this study. It would be interesting to find out if the students’

perceptions of these three instructional strategies are any

different, if all the students in the course shared their opinions.

C. Future Work

Our current work only focuses on students’ perceptions

of instructional strategies. It is also important to correlate

students’ peformance with their preferences since even though

in-class coding seems to be the least preferred instructional

technique by the students as a whole when compared to other

techniques, it may well be that the students who preferred in-

class coding may be the ones who performed better in the

course. So, one of the future work in this area is to correlate

students’ preferences with their performances to choose the

instructional strategies for teaching introductory programming.

Another suggestion for future work is to study the instruc-

tors’ perceptions on these three active learning instructional

techniques and compare them with the students’ perceptions.

By doing so, we would be able to understand these three

instructional techniques from the perspective of both the

students and the instructors. From this study, we may also

be able to find out why computing instructors prefer certain

instructional techniques when compared to others.

VII. CONCLUSION

This work evaluates the students’ perceptions of the effec-

tiveness of a trio of instructional practices commonly used

for teaching Computer Science. We conclude that students’

perceptions on mini-lectures, live-coding, and in-class coding

are mostly positive. Analysis of the student survey showed

that, majority of the students have reported live-coding and

mini-lectures to be most useful for their learning, while in-

class coding was not as useful as the other two techniques. We

also conclude that, computing students prefer active learning

instructional techniques when compared to traditional lecture

based classrooms for learning introductory programming.

REFERENCES

[1] Gottfried, Byron S. “Teaching computer programming effectively using
active learning.” American Society of Engineering Education Annual
Conference, June 1997.

[2] Paxton, J. “Live programming as a lecture technique.” Journal of Com-
puting Sciences in Colleges, 18(2), 51-56. 2002.

[3] Holliday, M., and David Luginbuhl. “Using memory diagrams when
teaching a Java-based CS1.” In Proc. of the 41st Annual ACM Southeast
Conference, pp. 376-381. 2003.

[4] McConnell, Jeffrey J. “Active learning and its use in computer science.”
ACM SIGCSE Bulletin 28, no. SI (1996): 52-54.

[5] Cordes, David, and Allen Parrish. “Active learning in computer science:
impacting student behavior.” In Frontiers in Education, 2002. FIE 2002.
32nd Annual, vol. 1, pp. T2A-T2A. IEEE, 2002.

[6] Cordes, David, and Allen Parrish. “Active Learning in Technical
Courses.” (1996).

[7] Astrachan, Owen L., Robert C. Duvall, Jeff Forbes, and Susan H. Rodger.
“Active learning in small to large courses.” In Frontiers in Education,
2002. FIE 2002. 32nd Annual, vol. 1, pp. T2A-T2A. IEEE, 2002.

[8] Smith, Peter D. “A Process Education Approach To Teaching Computer
Science.” (1996).

[9] Porter, Leo, Dennis Bouvier, Quintin Cutts, Scott Grissom, Cynthia
Lee, Robert McCartney, Daniel Zingaro, and Beth Simon. “A multi-
institutional study of peer instruction in introductory computing.” ACM
Inroads 7, no. 2 (2016): 76-81.

[10] Baldwin, Douglas. “Can we flip non-major programming courses yet?.”
In Proceedings of the 46th ACM Technical Symposium on Computer
Science Education, pp. 563-568. ACM, 2015.

108

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 03,2022 at 19:14:49 UTC from IEEE Xplore. Restrictions apply.

[11] Machemer, Patricia L., and Pat Crawford. “Student perceptions of active
learning in a large cross-disciplinary classroom.” Active Learning in
Higher Education 8, no. 1 (2007): 9-30.

[12] Lumpkin, Angela, Rebecca M. Achen, and Regan K. Dodd. “Student
perceptions of active learning.” College Student Journal 49, no. 1 (2015):
121-133.

[13] Smith, C. Veronica, and LeAnn Cardaciotto. “Is active learning like
broccoli? Student perceptions of active learning in large lecture classes.”
Journal of the Scholarship of Teaching and Learning 11, no. 1 (2012):
53-61.

[14] Van Gorp, Mark J., and Scott Grissom. “An empirical evaluation of using
constructive classroom activities to teach introductory programming.”
Computer Science Education 11, no. 3 (2001): 247-260.

[15] Rajaravivarma, Rathika. “A games-based approach for teaching the
introductory programming course.’’ ACM SIGCSE Bulletin 37, no. 4
(2005): 98-102.

[16] Simon, Beth, Michael Kohanfars, Jeff Lee, Karen Tamayo, and Quintin
Cutts. “Experience report: peer instruction in introductory computing.” In
Proceedings of the 41st ACM technical symposium on Computer science
education, pp. 341-345. ACM, 2010.

[17] Beichner, Robert J., Jeffery M. Saul, David S. Abbott, Jeanne J. Morse,
Duane Deardorff, Rhett J. Allain, Scott W. Bonham, Melissa H. Dancy,
and John S. Risley. “The student-centered activities for large enrollment
undergraduate programs (SCALE-UP) project.” Research-based reform
of university physics 1, no. 1 (2007): 2-39.

[18] Foriek, Michal, and Monika Steinov. “Metaphors and analogies for
teaching algorithms.” In Proceedings of the 43rd ACM technical sym-
posium on Computer Science Education, pp. 15-20. ACM, 2012.

[19] Waguespack Jr, Leslie J. “Visual metaphors for teaching programming
concepts.” Vol. 21, no. 1. ACM, 1989.

[20] Cao, Yingjun, Leo Porter, and Daniel Zingaro. “Examining the Value
of Analogies in Introductory Computing.” In Proceedings of the 2016
ACM Conference on International Computing Education Research, pp.
231-239. ACM, 2016.

[21] Holliday, M., and Luginbuhl, David “Using memory diagrams when
teaching a Java-based CS1.” Proc. of the 41st Annual ACM Southeast
Conference, 2003.

[22] Bennedsen, Jens, and Michael E. Caspersen. “Revealing the program-
ming process.” In ACM SIGCSE Bulletin, vol. 37, no. 1, pp. 186-190.
ACM, 2005.

[23] Gantenbein, Rex E. “Programming as process: a novel approach to
teaching programming.” In ACM SIGCSE Bulletin, vol. 21, no. 1, pp.
22-26. ACM, 1989.

[24] Rubin, Marc J. “The effectiveness of live-coding to teach introductory
programming.” Proc. of the 44th ACM technical symposium on Computer
Science Education, 2013.

[25] Bruhn, Russel E., and Philip J. Burton. “An approach to teaching Java
using computers.” ACM SIGCSE Bulletin 35, no. 4 (2003): 94-99.

[26] Boese, Elizabeth. “Just-In-Time learning for the just Google it era.”
In Proceedings of the 47th ACM Technical Symposium on Computing
Science Education, pp. 341-345. ACM, 2016.

109

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 03,2022 at 19:14:49 UTC from IEEE Xplore. Restrictions apply.

