
Effect of Native Language on Student Learning and
Classroom Interaction in an Operating Systems Course

Adalbert Gerald Soosai Raj
Department of Computer Sciences

and Education
University of Wisconsin-Madison

gerald@cs.wisc.edu

Eda Zhang
Department of Curriculum and

Instruction
University of Wisconsin-Madison

rzhang346@wisc.edu

Saswati Mukerjee
Department of Information Science

and Technology
College of Engineering Guindy, Anna

University
msaswati@auist.net

Jim Williams
Department of Computer Sciences
University of Wisconsin-Madison

jimw@cs.wisc.edu

Richard Halverson
Department of Educational

Leadership and Policy Analysis
University of Wisconsin-Madison

rich.halverson@wisc.edu

Jignesh M. Patel
Department of Computer Sciences
University of Wisconsin-Madison

jignesh@cs.wisc.edu

ABSTRACT
Understanding an operating systems (OS) code base is a difficult
task since it involves understanding a huge amount of low-level
C and assembly code. The inherent level of difficulty associated
with OS topics is high because of the high element interactivity
(i.e., material consists of elements that heavily interact). The mental
effort associated with learning a complex subject like OS may be
higher for non-native English speakers, when the subject is taught
in a natural language (i.e., English) that is not the students’ native
language. We were interested in finding the effect of an instruc-
tional design that combines the students’ native language along
with English on students’ understanding of select topics in OS. We
designed an experiment to teach CPU virtualization using xv6 to
two groups of undergraduate students in Tamil Nadu, India. We
taught the experimental group using English and Tamil (native
language of students in Tamil Nadu) and the control group using
only English. We conducted a pre-test and a post-test to test stu-
dents’ understanding of the OS topics taught, before and after our
intervention respectively. We also collected data on the questions
that students asked in lectures during our intervention. We found
that teaching OS using native language and English is no different
than teaching OS using only English with respect to student learn-
ing. We also found that the native language had an impact on the
student engagement and classroom interaction by creating more
dialogue within the Tamil+English (experimental) classroom when
compared to the English-only (control) classroom.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ITiCSE ’19, July 15–17, 2019, Aberdeen, Scotland, UK
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6301-3/19/07. . . $15.00
https://doi.org/10.1145/3304221.3319787

CCS CONCEPTS
• Social and professional topics→ Computer science educa-
tion;

KEYWORDS
Bilingual CS Education, Operating Systems, Native Language

ACM Reference format:
Adalbert Gerald Soosai Raj, Eda Zhang, Saswati Mukerjee, Jim Williams,
Richard Halverson, and Jignesh M. Patel. 2019. Effect of Native Language
on Student Learning and Classroom Interaction in an Operating Systems
Course. In Proceedings of Innovation and Technology in Computer Science
Education, Aberdeen, Scotland, UK, July 15–17, 2019 (ITiCSE ’19), 7 pages.
https://doi.org/10.1145/3304221.3319787

1 INTRODUCTION
Students in India learn their subjects during K-12 (kindergarten
(K) through twelfth grade (12)) either in English or their native
language (i.e., the language that a person has spoken from earliest
childhood). This choice of language depends onwhether the student
studies in an English-medium school or a native-language-medium
school during their K-12. The decision about which medium of in-
struction a child studies is made by the child’s parents. The parents
make these decisions mainly based on their financial status. Tamil-
medium education is free of cost but English-medium education
costs some money. This difference in costs forces the students from
poor financial backgrounds to learn only in Tamil-medium as these
students’ parents are not in a position to afford an English-medium
school for their children’s education.

Although there are two mediums of instruction during K-12,
Computer Science is taught in undergraduate institutions primarily
in English. The main reason for teaching CS in English is because
English is the de facto international language of programming [9].
Therefore, students who aren’t very comfortable in English (e.g.,
students who studied in a Tamil-medium school during their K-12
and students who aren’t proficient with English even though they
may have studied in an English medium school) find it difficult to

Session 8B: Operating Systems and Security ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

499

https://doi.org/10.1145/3304221.3319787
https://doi.org/10.1145/3304221.3319787

understand introductory programming concepts since the subject
is already difficult and they are also forced to learn it in a language
that they are not comfortable with [13]. As a result, these students
end up failing their CS courses, and eventually develop inferiority
complexes about their abilities [12].

Most of the prior work in the area of bilingual CS education
have been focused mainly on teaching introductory programming
[13, 20]. Although the upper-level CS courses like the operating
systems are considered to be inherently more difficult than the intro
programming courses, to the best of our knowledge, no previous
work has been done in studying the effect of a students’ native
language in learning advanced subjects like the operating systems.
We consider our work as a first small step in this direction.

Our research tries to answer the following two questions:
(1) What is the effect of using the native language of non-native

English speakers on student understanding of concepts/code in
an upper level Computer Science course, like introduction to
operating systems (using xv6 codebase)?

(2) What is the effect of native language on classroom interaction
measured using the number and the quality of questions asked
during a class?

To answer these questions and to better understand the impact
of the medium of instruction to teach upper-level CS classes, we
conducted an experiment where we taught an OS course based
on xv6 [4] (a simple unix-like teaching operating system) using
both Tamil and English to a group of students (experimental group)
whose native language was Tamil. We also taught the same OS
course to another set of students (control group) only in English,
even though their native language was also Tamil. We used Tamil
along with English to teach the experimental group since we believe
that even though Tamil may help students to better understand
programming concepts, they should learn English too since English
is the global language for programming and communication [11].

2 RELATEDWORK
Soosai Raj et. al. [20] studied the effect of native language on student
learning and sentiments and found that teaching linked lists in data
structures using Tamil and English was no different than teaching
using only English. They also found that students have expressed
positive sentiments about learning using two languages, based on
the student feedback data [19]. We consider our study to be an
extension of this work applied to the domain of an upper-level CS
class.

John Airey [1] studied undergraduate physics classes that were
taught in English and Swedish to 22 students at two Swedish univer-
sities. The lectures were recorded and students were interviewed
using stimulated recall. He found that when taught in English the
students asked and answered fewer questions and reported being
less able to simultaneously follow the lecture and take notes. Stu-
dents adapted to being taught in English by; asking questions after
the lecture, no longer taking notes in class, reading sections of
work before class or - in the worst case - by using the lecture for
mechanical note taking. Our study is an application of this work
in the context of computer science education. We made classroom
observations and made a note of the classroom interactions based
on the questions asked by the students.

Pal and Iyer [14–16] studied the effect of using native language
(Hindi) on student learning for non-native English speakers. They
found that Hindi-medium students understood programming con-
cepts better (measured using post-tests), when they were taught
using Hindi compared to being taught using only-English. Our
study differs from this study in the medium of instruction used for
teaching programming: they used a Hindi-only approach while we
used a bilingual (Tamil+English) approach.

Probyn interviewed some teachers in South Africa who use Eng-
lish along with Xhosa, an official South African language, to teach
Science [17, 18]. The study shows that the language of learning
and teaching frequently creates a barrier to learning when it is not
the native language of the learners. The benefits of code-switching
between the two languages for increased comprehension among
students is also highlighted. We consider our study as an extension
to this study where we try to find if the vernacular has any effect
on learning programming, mainly by measuring student learning
using pre-and-post technical tests.

3 METHODOLOGY
In this section, we explain the methodology that we used to conduct
our experiment and collect our data.

3.1 Participants
The experiment was conducted in a well reputed Engineering col-
lege in Tamil Nadu. Two groups of third-year students, enrolled in
two different sections of an operating systems course were selected
as participants for our study. One group was treated as the control
group and the other group was treated as the experimental group.
The total number of students in the control and experimental group
were 51 and 39 respectively. All these students have previously
taken a programming and data structures course in C [10]. They
have also taken an introductory course on the basic concepts of
an operating systems (e.g., scheduling policies, page replacement
policies, process creation APIs, concurrency using threads, etc) in
which they learn policies and APIs of an OS. The course in which
we conducted our intervention was the next course that students
take after the basic OS course in which they learn the mechanisms
and implementation details of CPU/memory virtualization, and File
Systems in a unix-like OS.

3.2 Experimental Design
The experiment was conducted using a nonrandomized control group
pre-test post-test design [5]. In this design, the participants were not
randomly assigned to groups but remained in their pre-assigned
groups. This was done as we conducted our experiments as part
of regular classes and so were not able to randomize and regroup
our participants into two new groups. This experimental design
helped us to keep the details of our experimental procedure to
be a secret from the students until the end of our intervention.
This increases the external validity of the design by reducing the
reactive effects of the experimental procedure [5]. We acknowledge
that the problem with this approach is that even if there are any
post-test differences between the groups, they may be attributed
to characteristic difference between the groups rather than to the
intervention. We take this issue into consideration in our result

Session 8B: Operating Systems and Security ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

500

analysis by choosing our statistical models for pre-test post-test
comparison very carefully (see Section 4 for more details). The
teacher, who was the actual instructor for the two sections of this
course, agreed to teach the two groups during our intervention.

The teachers introduced the researcher as a visiting faculty who
will observe their classes and co-teach a few classes whenever
needed. The researcher was a silent observer who took field notes
during the intervention. The researcher helped the teacher answer
a few questions on xv6 [4] codebase whenever the teacher needed
some help. It is important to note that, as a part of our experiment,
xv6 was introduced for the first time in this operating systems
course, as a way to explain the concepts underlying the unix oper-
ating systems. As xv6 was a new codebase even for the instructor,
the researcher who was familiar with the codebase before, helped
the teacher in answering a few questions that the students asked
about the codebase during the lectures.

3.3 Experimental Procedure
The following activities were performed with both the English-only
(control) group and the Tamil+English (experimental) group as a
part of our intervention. There was a pre-test, in-class lectures,
code walkthrough sessions, and a post-test. The questions in the
pre-test and the post-test were in English for both groups.

3.3.1 Pre-test. A pre-test was conducted to determine the stu-
dents’ understanding of the basic concepts of an OS. There were
four questions on the pre-test. There was one question each on
CPU scheduling policies, page replacement algorithms, creating
new processes using fork and exec, and concurrency using threads.
The pre-test was conducted for a total of 24 points, six points for
each question. The pre-test questions were created based on the
previous topics that students learned in the basic OS course, in
consultation with the instructor who taught that course.

The above mentioned topics were tested in the pre-test as they
would give us a baseline for understanding the students’ prior
knowledge about an OS before our intervention. The complete
pre-test can be found at this link: http://bit.do/os_pretest.

3.3.2 Classroom Lectures. Twelve classroom-based lectures, each
of 50 minutes duration, were presented for both groups. The mech-
anisms behind CPU virtualization were explained in those twelve
lectures. Topics discussed were: process creation, limited direct ex-
ecution, system calls, timer interrupt, context switch, etc. The same
topics were taught to both the groups. The free online textbook,
Operating Systems: Three Easy Pieces (OSTEP) [3], was used as a
reference to teach these topics.

The main differences between the lectures for the two groups
were the following: The lectures were taught only in English for
the students in the control group. Also, the students in the control
group were required to communicate with the instructor and their
classmates during the lecture in English only.

On the other hand, the lectures were taught using both English
and Tamil in the experimental group, and the students were free
to communicate in any of those two languages, whichever they
felt more comfortable with. The instructor used both English and
Tamil nearly equally (i.e., 50% time in English - 50% time in Tamil)
while teaching the experimental group. The instructor answered

the questions during the lecture using the same language (either
English or Tamil) in which they were asked.

The instructor used bilingual teachingmethods like code-switching
[6] and translanguaging [7] for teaching the Tamil+English (exper-
imental) group. The instructor used code-switching for switching
between Tamil and English in the following way. She used English
to introduce a topic, to explain the basic idea behind the topic, and
to explain some technical terms (e.g., context switch). She switched
to Tamil whenever she felt that a particular topic needed detailed
explanation in order to help the students understand the idea in a
better way (e.g., How does a context switch happen?). The instruc-
tor used translanguaging as follows. She used Tamil only for oral
explanations, discussion, and answering students’ questions. She
wrote all the content (e.g., topic names, definitions, explanations
etc.) on the chalk-board during the lectures only in English.

3.3.3 CodeWalkthrough Sessions. The instructor conducted reg-
ular code walkthrough sessions as a part of our intervention, where
she helped students understand the code flow of the OS topics dis-
cussed in the lectures (e.g., system call, scheduler, context switch).
xv6 code was used during these code walkthrough sessions for
understanding the internal workings of a unix-like operating sys-
tem. The code walkthrough sessions were conducted as a part of
the twelve lectures (see Section 3.3.2). Approximately, six of the
twelve classroom lectures were used for code walkthroughs and
the remaining six were used for explaining OS concepts about CPU
virtualization.

The only difference between the code walkthrough sessions for
the two groups was the language that was used while explaining
the xv6 code: Tamil and English was used for the code explanations
in the experimental group while English only was used for code
explanations in the control group.

3.3.4 Post-test. The post-test consisted of 7 questions on CPU
virtualization. The post-test questions were open-ended and based
on the following topics: (1) Process state transitions, (2) Trapping
into the kernel, (3) System calls vs library functions, (4) Process Con-
trol Block (PCB) in xv6, (5) User vs kernel threads, (6) syscall()
function in xv6, and (7) Steps in servicing a system call.

All the questions on the post-test were based on the material
taught during the classroom-based lectures and the code walk-
through sessions. The post-test was conducted for a total of 25
points. The complete post-test can be found at this link: http:
//bit.do/os_posttest.

3.3.5 Classroom observations. The researcher observed two reg-
ular classes before our intervention. Classes were taught only in
English to both the groups before our intervention. Our interven-
tion was conducted only for 6 weeks during the regular semester
(which is usually 15 weeks long).

During our intervention, the researcher acted as a silent observer
and took field notes of the questions asked by the students, answers
given by the instructor, and the follow-up questions that were arised
and answered. The observer also made notes of the language used
for asking the questions. One sample interaction in the experimental
group was as follows (Q - question asked by the student; A - answer
given by the teacher): Q: Why do we save the context of process A
twice during a context switch? A: We save it twice because if we are

Session 8B: Operating Systems and Security ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

501

http://bit.do/os_pretest
http://bit.do/os_posttest
http://bit.do/os_posttest

switching to a different process, then we need to save the context of
both the user thread and the kernel thread of process A. Q: So, do we
use different memory locations to store these two different contexts? A:
Yes, we do. The context of the user thread is stored in a structure called
a trap frame and the context of the kernel thread is stored in a structure
called process control block in xv6. The complete set of questions
asked by students in both the groups and the answers given by the
instructor can be found here: http://bit.do/os_questions

4 RESULTS
The mean of the pre-test scores and the post-test scores for the two
groups are shown in Table 1 and Table 2 respectively.

Table 1: Mean of pre-test scores for the two groups

Group N Mean Std. Dev. Std. Error of Mean
Control 51 48.0 16.9 2.4

Experimental 39 58.2 14.7 2.4

Table 2: Mean of post-test scores for the two groups

Group N Mean Std. Dev. Std. Error of Mean
Control 51 55.1 20.2 2.8

Experimental 39 59.7 20.4 3.3

4.1 Analysis of Pre-test Scores
We compared the pre-test of both groups using an independent
samples t-test. The following assumptions for two sample t-test
were satisfied:
(1) The Central Limit Theorem (CLT) applies to each sample indi-
vidually. i.e., pre-test data is normally distributed in both the groups
as confirmed by the Quantile-Quantile (Q-Q) plots.
(2) The pre-test scores of both the groups are random samples that
are independent of each other.
(3) The variances of the pre-test scores are approximately equal.
(i.e., Standard deviation of control group (s1) = 16.9; Standard devi-
ation of experimental group (s2) = 14.7; s1/s2 = 1.1 < 1.5).

We performed an independent samples t-test to compare the
pre-test scores between the control group and the experimental
group and found a significant difference in pre-test scores between
the two groups (t(90) = -3.05, df = 88, p = 0.003). This means that
the two groups differed significantly with respect to their prior
knowledge on OS concepts. Therefore, we cannot directly compare
the post-test scores between the two groups using independent
samples t-test [5]. Instead we intend to do the following two types
of analysis:
(1) Compare the gain scores (post-test - pre-test) of the two groups
using an independent samples t-test (if t-test assumptions are satis-
fied).
(2) Compare the post-test scores of sub-groups of students having
the same pre-test score between the two groups using ANalysis of
COVAriance (ANCOVA) [8]. Note that post-test analysis was not
possible since the assumptions for ANCOVA was not satisfied (see
Section 4.3).

4.2 Analysis of Gain Scores
The mean of the gain scores for the two groups are shown in Table 3.
The mean gain for the control group is higher than that of the
experimental group. The assumptions for independent samples
t-test (as shown in Section 4.1) were satisfied by the gain scores
of both the groups. We performed independent samples t-test [8]
to compare the gain scores between the control group and the
experimental group and found no significant difference in gain scores
(t(90) = 1.25, df = 88, p = 0.21).

Table 3: Mean of gain scores for the two groups

Group N Mean Std. Dev. Std. Error of Mean
Control 51 7.1 18.9 2.6

Experimental 39 1.5 22.7 3.6

4.3 Analysis of Post-test Scores
We intended to use ANCOVA to find if there was any difference in
the post-test score (response variable) due to the students’ group
(independent variable), while controlling for the students’ pre-test
scores (covariate). All assumptions of ANCOVA were satisfied for
our data, except the homogeneity of regression lines. Hence, we
were not able to compare the post-test differences between the two
groups using ANCOVA as explained below.

Figure 1: A scatter plot showing each student’s pre-test score plotted on the
x-axis and the post-test score plotted on the y-axis. The regression lines are
also plotted for each group which shows the relationship between the
pre-test and post-test scores.

We plot a scatter plot in Figure 1 using the pre-test and the post-
test scores of the students in both the groups. In this scatter plot,
the x-axis represents the pre-test scores of the students and the
y-axis represents the post-test scores of the students. The two lines
shown in this scatter plot are the regression lines for a particular
group that summarizes the relationship between the post-test score
and the pre-test score for that group.

Session 8B: Operating Systems and Security ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

502

http://bit.do/os_questions

The regression lines for both the groups have positive slopes (0.26
for the experimental group and 0.59 for the control group) and the
regression lines are above the diagonal (i.e., the line connecting the
points (0,0) and (100,100)), which means that our intervention had
a similar positive effect on both the groups. But the slopes are not
nearly equal since the slope of the regression line for the control
group (0.59) is more than twice the slope of the regression line for
the experimental group (0.26). This means that we cannot apply
ANCOVA to find if there is any significant difference between the
post-test scores of the two groups.

4.4 Analysis of Student Questions
The number of questions asked by the students in both the groups
is shown in Table 4. The total number of questions asked by the
students in the Tamil+English (experimental) group (# questions =
11) is nearly three times more than the number of questions asked
by the students in the English-only (control) group (# questions =
4).

Table 4: Number of questions asked by the students in the two groups

Group Total questions # English # Tamil
Control 4 4 0

Experimental 11 2 8

In the experimental group, the number of questions asked in
Tamil (# questions = 8) were more than the number of questions
asked in English (# questions = 2) by a factor of 4 (i.e., a ratio of 4:1
in favour of Tamil). One student asked a question in English and
followed up with another question in Tamil. This student’s question
was not considered to be in either of the two groups and hence the
number of questions in English (2) + number of questions in Tamil
(8) is one less than the total number of questions (11). In the control
group, there weren’t any question that were asked in Tamil since
the students were required to communicate only in English.

One interesting observation was that, even though there were
not as many questions in the control group as there were in the
experimental group during the lectures, the number of students
who asked questions on a one-on-one basis after class was more
in the English-only (control) group than in the Tamil and English
(experimental) group.

We classify the questions asked by the students in both the
groups into the following four types of knowledge dimensions
based on revised Bloom’s taxonomy [2]:
(1) Factual knowledge (e.g., What is an address space?)
(2) Conceptual knowledge (e.g., Why doesn’t a program have stack
or heap when it is on disk?)
(3) Procedural knowledge (e.g., When we switch from one process
to another are there really two context switches that happens?)
(4) Metacognitive knowledge (e.g., Why do we save the context of
process A twice during a context switch?)

A few questions were classified under more than one knowledge
domain. For example, the following question asked by a student
started as a factual question but the follow-up question was in
the conceptual knowledge domain (Q - Question; A - Answer): Q
(Student): What is static data? A (Teacher): Static data is the part of
the address space where global and static variables that are common
for all functions are stored. Q (Student): Why can’t those variables

be stored on the stack? A (Teacher): Good question. They can’t be
stored on the stack since these variables should be accessible from any
function. A stack frame for a function only stores the local variables
that were created within the function and hence these local variables
are accessible only fromwithin the function that is currently executing.
Note that even though there were two questions that were asked
as a part of this interaction, it was treated as only one question
as follow-up questions were considered to be part of the original
question.

The number of questions that are classified across the four dif-
ferent knowledge dimensions is shown in Table 5.

Table 5: Classification of questions across 4 knowledge domains

Group Factual Conceptual Procedural Metacog.
Ctrl 3 0 1 0
Exp 4 7 2 2

The number of factual questions in both the groups were almost
equal. There were no conceptual questions in the English-only
(control) group while there were seven conceptual questions in the
Tamil+English (experimental) group. The number of procedural
questions in the English-only and the Tamil+English group were
one and two respectively. There were no metacognitive questions
in the English-only group while there were two such questions in
the Tamil+English group.

There were no follow-up questions in the English-only (control)
group and there were five follow-up questions in the Tamil+English
(experimental) group.

The questions across the four knowledge domains asked by
the students in the experimental group are classified based on the
language (Tamil or English) that was used to ask the question and
the results are summarized in Table 6.
Table 6: Classification of questions across the four knowledge domains from

the Tamil+English (experimental) group based on the language

Domain English Tamil
Factual 2 2

Conceptual 1 6
Procedural 0 2

Metacognitive 0 2

There were equal number of factual questions in Tamil and
English. Six conceptual questions were asked in Tamil while one
was asked in English. All procedural and metacognitive questions
were asked in Tamil.

5 DISCUSSION
5.1 Interpretation of Results
Our study tried to find if using the native language (Tamil) along
with English for teaching an upper-level CS course like the operat-
ing systems had any effect on students’ learning of programming
when compared to using only English. We measured the student
learning in terms of gain scores and post-test scores.

The difference between the two groups with respect to the gain
score is not statistically significant (see Section 4.2). This shows that
teaching programming using Tamil and English is no different than
teaching programming using only English. Also, we were unable to

Session 8B: Operating Systems and Security ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

503

measure the difference between the two groups with respect to the
post-test score (with the pre-test score as a covariate) using AN-
COVA since one of the ANCOVA assumptions (i.e., homogeneity of
regression slopes) was not satisfied. Therefore, we need more quan-
titative experiments in this area to better understand the impact of
the native language on students’ understanding of upper-level CS
concepts.

Our finding on the effect of native language on student learning
in an operating systems course matches the findings of Soosai Raj
et. al. [20] which found that the use of the native language (Tamil)
did not have a significant positive impact on student learning in a
data structures course. We consider our findings to be a validation
of the previous results from an introductory programming course
to an upper-level CS course.

On the other hand, our findings contradict the findings of Pal
and Iyer [13] which suggests that the native language (Hindi) had
a significant positive effect on students who did their schooling in
a Hindi-medium school. The main reason for this difference might
be that in our study even though the native language of all students
was Tamil, the majority of students studied in an English-medium
school during their K-12. On the other hand, 50% of students in Pal
and Iyer’s study were from a Hindi-medium background.

Based on the classroom observations we conducted as part of our
study, we did a frequency count of the questions that were asked
in the classroom, during our intervention, in both the groups. We
found that giving students the freedom to speak using either their
native language (Tamil) or English increased the classroom interac-
tion that happened during the lectures (measured using the ques-
tions that were asked by the students in-class) in the Tamil+English
(experimental) group when compared to the English-only (control)
group (see Table 4).

We classified the questions along four knowledge dimensions
based on the revised Bloom’s taxonomy [2] and found that the
students in the Tamil+English (experimental) group asked more
questions about conceptual and procedural knowledge while the
students in the English-only (control) group asked questions mainly
about factual knowledge. We also found that 80% of the questions
that students asked in the Tamil+English group were in Tamil. The
use of the students’ native language also encouraged the students in
the Tamil+English group to ask follow-up questions in their native
language while such a trend of asking follow-up questions was
not found in the English-only group. Our results on analyzing the
student questions shows that the use of the native language had an
impact on the number and the quality of questions that non-native
English speakers ask in a CS classroom.

An alternative interpretation of our results is that the students
in the Tamil+English (experimental) group are better students
(based on the pre-test scores) when compared to the students in the
English-only (control) group. Therefore, the questions that these
students asked might not be due to the native language but instead
due to their inherent curiosity. We argue that this might not be the
case since classroom observations that were conducted before our
intervention showed that the amount of interaction that happened
in the two groups were minimal and similar across the two groups.

Our results on the classroom interaction matches those observed
by Airey [1] while teaching physics using English and Swedish.

For example, Airey found that English is a barrier for students to
ask questions during a lecture because students do not want to
be embarrassed before their peers by asking a question in English.
We also found that students in the English-only (control) group
asked a lot fewer questions than students in the Tamil+English
(experimental) group, where students were free to use their native
language, if needed.

5.2 Limitations and Future Work
The main limitation of our study is the use of nonrandomized control
group pre-test post-test design. We used this design mainly because
we wanted our intervention to be part of regular classes. Therefore,
we weren’t able to randomize students into two different groups
but instead used the two pre-formed groups as our experimental
and control groups. As a consequence, the two groups varied signif-
icantly with respect to their prior knowledge in OS before the start
of our intervention. Although we have taken this pre-test difference
into consideration in our analysis of results, we acknowledge that
the results would have been more reliable if these initial differences
didn’t exist among these groups. To minimize the effects due to
the initial differences among the two groups, as a part of our fu-
ture work, we plan to conduct more controlled experiments with a
randomized control group pre-test post-test design [5] to better un-
derstand the effects of the native language for learning upper-level
CS classes. We plan to do this by conducting special topics courses
(outside students’ regular course schedules) where the instructor
will have the flexibility to randomize students into two different
groups.

Another limitation with our study is that we did not control for
the students’ English proficiency. This is important because if the
students in the two groups differed significantly in their English
skills, then this might be an important confounding factor in our
experiments. As part of our future experiments we plan to control
for the students’ English skills by conducting tests for English
proficiency prior to our intervention.

6 CONCLUSION
We found that teaching an upper-level CS course (i.e., operating
systems) using a bilingual teaching methodology (in Tamil and
English) is no different than teaching using only English with re-
spect to student learning measured using pre- and post- tests. We
also found that the native language had a positive impact on the
classroom interaction, measured using the quantity and the quality
of student questions that were asked during the class. We conclude
that more studies should be conducted in bilingual CS education,
across different CS courses and using different natural languages
(e.g., Spanish) to truly understand and benefit from the role that
native language plays in computer science education.

ACKNOWLEDGEMENTS
Our sincere thanks to Dr. Saswati Mukherjee, Ms. V. Ezhil Arasi
and Mr. B. R. Yuvaraj for allowing us to work with their students
and helping us conduct these experiments. We also thank all the
students who took part in our experiments.

Session 8B: Operating Systems and Security ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

504

REFERENCES
[1] John Airey. 2009. Science, language, and literacy: Case studies of learning in Swedish

university physics. Ph.D. Dissertation. Acta Universitatis Upsaliensis.
[2] LorinWAnderson, David R Krathwohl, PeterWAirasian, KathleenACruikshank,

Richard E Mayer, Paul R Pintrich, James Raths, and Merlin C Wittrock. 2001.
A taxonomy for learning, teaching, and assessing: A revision of BloomâĂŹs
taxonomy of educational objectives, abridged edition. White Plains, NY: Longman
(2001).

[3] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. 2015. Operating Sys-
tems: Three Easy Pieces (0.91 ed.). Arpaci-Dusseau Books.

[4] Russ Cox, M Frans Kaashoek, and Robert Morris. 2011. Xv6, a simple Unix-like
teaching operating system. (2011).

[5] Dimiter M Dimitrov and Phillip D Rumrill Jr. 2003. Pretest-posttest designs and
measurement of change. Work (2003).

[6] Jennifer R Fennema-Bloom. 2009. Code-scaffolding: A pedagogic code-switching
technique for bilingual content instruction. Journal of Education (2009).

[7] Ofelia García and Claire E Sylvan. 2011. Pedagogies and practices in multilingual
classrooms: Singularities in pluralities. The Modern Language Journal (2011).

[8] Gene V Glass and Kenneth D Hopkins. 1970. Statistical methods in education and
psychology. Prentice-Hall Englewood Cliffs, NJ.

[9] Philip J Guo. 2018. Non-Native English Speakers Learning Computer Program-
ming: Barriers, Desires, and Design Opportunities. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems. ACM, 396.

[10] Brian W Kernighan and Dennis M Ritchie. 2006. The C Programming Language.
(2006).

[11] Thomas Andrew KIRKPATRICK. 2011. Internationalization or Englishization:
Medium of instruction in today’s universities. (2011).

[12] T Murugavel. 2011. The Problems of Non-English Medium Engineer-
ing Students and Possible Solutions. (2011). http://worldlitonline.net/
the-problems-of-non-english.pdf

[13] Yogendra Pal. 2016. A Framework for Scaffolding to Teach Programming to Vernac-
ular Medium Learners. Ph.D. Dissertation. IIT, Bombay.

[14] Yogendra Pal and Sridhar Iyer. 2012. Comparison of English versus Hindi Medium
Students for Programming Abilities Acquired through Video-Based Instruction.
In T4E. IEEE.

[15] Yogendra Pal and Sridhar Iyer. 2015. Classroom Versus Screencast for Native Lan-
guage Learners: Effect of Medium of Instruction on Knowledge of Programming.
In ITiCSE. ACM.

[16] Yogendra Pal and Sridhar Iyer. 2015. Effect of medium of instruction on program-
ming ability acquired through screencast. In LaTiCE. IEEE.

[17] Margaret Probyn. 2001. Teachers voices: Teachers reflections on learning and
teaching through the medium of English as an additional language in South
Africa. Bilingual Education and Bilingualism (2001).

[18] Margaret Probyn. 2005. Learning science through two languages in South Africa.
In The 4th International Symposium on Bilingualism, Somerville, MA.

[19] Adalbert Gerald Soosai Raj, Kasama Ketsuriyonk, Jignesh M Patel, and Richard
Halverson. 2017. What Do Students Feel about Learning Programming Using
Both English and Their Native Language?. In 2017 International Conference on
Learning and Teaching in Computing and Engineering (LaTICE). IEEE, 1–8.

[20] Adalbert Gerald Soosai Raj, Kasama Ketsuriyonk, Jignesh M Patel, and Richard
Halverson. 2018. Does Native Language Play a Role in Learning a Programming
Language?. In Proceedings of the 49th ACM Technical Symposium on Computer
Science Education. ACM, 417–422.

Session 8B: Operating Systems and Security ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

505

http://worldlitonline.net/the-problems-of-non-english.pdf
http://worldlitonline.net/the-problems-of-non-english.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Participants
	3.2 Experimental Design
	3.3 Experimental Procedure

	4 Results
	4.1 Analysis of Pre-test Scores
	4.2 Analysis of Gain Scores
	4.3 Analysis of Post-test Scores
	4.4 Analysis of Student Questions

	5 Discussion
	5.1 Interpretation of Results
	5.2 Limitations and Future Work

	6 Conclusion
	References

